Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-15528161

RESUMO

Ca2+ uptake and Ca2+ extrusion mechanisms were studied in enterocytes with different degree of differentiation from chicks adapted to a low Ca2+ diet as compared to animals fed a normal diet. Chicks adapted to a low Ca2+ diet presented hypocalcemia, hypophosphatemia and increased serum 1,25(OH)2D3 and Ca2+ absorption. Low Ca2+ diet increased the alkaline phosphatase (AP) activity, independently of the cellular maturation, but it did not alter gamma-glutamyl-transpeptidase activity. Ca2+ uptake, Ca2+-ATPase and Na(+)/Ca2+ exchanger activities and expressions were increased by the mineral-deficient diet either in mature or immature enterocytes. Western blots analysis shows that vitamin D receptor (VDR) expression was much higher in crypt cells than in mature cells. Low Ca2+ diet decreased the number of vitamin D receptor units in both kinds of cells. In conclusion, changes in Ca2+ uptake and Ca2+ extrusion mechanisms in the enterocytes by a low Ca2+ diet appear to be a result of enhanced serum levels of 1,25(OH)2D3, which would promote cellular differentiation producing cells more efficient to express vitamin D dependent genes required for Ca2+ absorption.


Assuntos
Ração Animal , Cálcio da Dieta/metabolismo , Cálcio/deficiência , Cálcio/metabolismo , Enterócitos/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Calcitriol/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Diferenciação Celular , Embrião de Galinha , Galinhas , Duodeno/metabolismo , Immunoblotting , Membranas Intracelulares/metabolismo , Receptores de Calcitriol/metabolismo , Trocador de Sódio e Cálcio , Fatores de Tempo , Vitamina D/metabolismo , gama-Glutamiltransferase/metabolismo
2.
J Nutr Biochem ; 14(8): 466-72, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12948877

RESUMO

The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.


Assuntos
Cálcio/farmacocinética , Galinhas/metabolismo , Absorção Intestinal/efeitos dos fármacos , Vitamina K 3/administração & dosagem , Fosfatase Alcalina/antagonistas & inibidores , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/administração & dosagem , Glutationa/análise , Glutationa/metabolismo , Intestinos/enzimologia , Microvilosidades/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...