Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 287: 117620, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171723

RESUMO

Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO2. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O3 m-2 s-1 were tested. The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m-2 s-2 produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m-2 s-1 or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0-1 nmol m-2 s-1). A "dynamic threshold" obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m-2 y-1 and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O3 m-2 s-1), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Ecossistema , Florestas , Ozônio/análise , Ozônio/toxicidade , Estômatos de Plantas , Estações do Ano
2.
Sci Total Environ ; 691: 516-527, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325852

RESUMO

European standards for the protection of forests from ozone (O3) are based on atmospheric exposure (AOT40) that is not always representative of O3 effects since it is not a proxy of gas uptake through stomata (stomatal flux). MOTTLES "MOnitoring ozone injury for seTTing new critical LEvelS" is a LIFE project aimed at establishing a permanent network of forest sites based on active O3 monitoring at remote areas at high and medium risk of O3 injury, in order to define new standards based on stomatal flux, i.e. PODY (Phytotoxic Ozone Dose above a threshold Y of uptake). Based on the first year of data collected at MOTTLES sites, we describe the MOTTLES monitoring station, together with protocols and metric calculation methods. AOT40 and PODY, computed with different methods, are then compared and correlated with forest-health indicators (radial growth, crown defoliation, visible foliar O3 injury). For the year 2017, the average AOT40 calculated according to the European Directive was even 5 times (on average 1.7 times) the European legislative standard for the protection of forests. When the metrics were calculated according to the European protocols (EU Directive 2008/50/EC or Modelling and Mapping Manual LTRAP Convention), the values were well correlated to those obtained on the basis of the real duration of the growing season (i.e. MOTTLES method) and were thus representative of the actual exposure/flux. AOT40 showed opposite direction relative to PODY. Visible foliar O3 injury appeared as the best forest-health indicator for O3 under field conditions and was more frequently detected at forest edge than inside the forest. The present work may help the set-up of further long-term forest monitoring sites dedicated to O3 assessment in forests, especially because flux-based assessments are recommended as part of monitoring air pollution impacts on ecosystems in the revised EU National Emissions Ceilings Directive.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Ozônio/análise , Conservação dos Recursos Naturais , Ecossistema , Agricultura Florestal , Florestas , Estômatos de Plantas
3.
Int J Biometeorol ; 63(8): 1039-1049, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31065840

RESUMO

Weather extremes and extreme climate events, like late spring frosts, are expected to increase in frequency and duration during the next decades. Although spring phenology of European beech is well adapted to escape freeze damages on longer time scales, the effects of occasional late spring frosts (LSF) are among the main climatic damages to these forests to such an extent that they limit beech distribution and elevation range, especially at its southern margin. The aim of this work was to evaluate the short-term effects of two consecutive LSF events occurred in 2016 and 2017 in Italy on the beech forest vegetation activity. Remotely sensed land surface temperature (LST) data were used to detect the pixels where LSF occurred, while enhanced vegetation index (EVI) data were used to quantify LSF effects by computing a spring vegetation activity anomaly index (sAI). In 2016 and 2017, the LSF covered, respectively, about 29% and 32% of the total Italian beech-dominated area. The two LSF widely differed in their spatial patterns and their effects. In 2016, the pixels belonging to the sAI classes with the highest spring anomalies were also those where prolonged LSF occur, while, in 2017, the pixels belonging to the highest sAI classes were those that underwent the shorter (but probably more intense) LSF events. Under scenarios of increased frequency risk of repeated LSF, the proposed methodology may represent an automatic and low-cost tool both for monitoring and predicting European beech growth patterns.


Assuntos
Fagus , Mudança Climática , Florestas , Itália , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...