Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104245

RESUMO

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/virologia , SARS-CoV-2/imunologia , Vacinação/métodos , Vacinas Sintéticas/farmacologia , Vacinas de mRNA/farmacologia , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Vigilância da População , Estudos Retrospectivos , Estados Unidos/epidemiologia , Adulto Jovem
2.
Front Chem ; 9: 735558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631661

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus utilizes the extensively glycosylated spike (S) protein protruding from the viral envelope to bind to angiotensin-converting enzyme-related carboxypeptidase (ACE2) as its primary receptor to mediate host-cell entry. Currently, the main recombinant S protein production hosts are Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells. In this study, a recombinant S protein truncated at the transmembrane domain and engineered to express a C-terminal trimerization motif was transiently produced in CHO and HEK cell suspensions. To further evaluate the sialic acid linkages presenting on S protein, a two-step amidation process, employing dimethylamine and ammonium hydroxide reactions in a solid support system, was developed to differentially modify the sialic acid linkages on the glycans and glycopeptides from the S protein. The process also adds a charge to Asp and Glu which aids in ionization. We used MALDI-TOF and LC-MS/MS with electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to determine global and site-specific N-linked glycosylation patterns. We identified 21 and 19 out of the 22 predicted N-glycosites of the SARS-CoV-2 S proteins produced in CHO and HEK, respectively. It was found that the N-glycosite at 1,158 position (N1158) and at 122, 282 and 1,158 positions (N122, N282 and N1158) were absent on S from CHO and HEK cells, respectively. The structural mapping of glycans of recombinant human S proteins reveals that CHO-Spike exhibits more complex and higher sialylation (α2,3-linked) content while HEK-Spike exhibits more high-mannose and a small amount of α2,3- and α2,6-linked sialic acids. The N74 site represents the most abundant glycosite on both spike proteins. The relatively higher amount of high-mannose abundant sites (N17, N234, N343, N616, N709, N717, N801, and N1134) on HEK-Spike suggests that glycan-shielding may differ among the two constructs. HEK-Spike can also provide different host immune system interaction profiles based on known immune system active lectins. Collectively, these data underscore the importance of characterizing the site-specific glycosylation of recombinant human spike proteins from HEK and CHO cells in order to better understand the impact of the production host on this complex and important protein used in research, diagnostics and vaccines.

3.
Curr Opin Biotechnol ; 71: 216-224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478939

RESUMO

Upstream process development seeks to optimize media formulations to promote robust cell culture conditions and regulate product quality attributes such as glycosylation, aggregation, and charge variants. Transition metal ions Mn, Fe, Cu, and Zn present in cell culture media have a significant impact on cell growth, metabolism and product quality. These metals and other media components can have different chemical associations or speciation in media that are poorly characterized but may significantly impact their properties and effect on cellular performance. Computer-based equilibrium models are a good starting point for exploring metal speciation, bioavailability and conditions where precipitation may occur. However, some equilibrium constants, especially for newly introduced medium components, have not been experimentally determined. Owing to concurrent physical and biological processes, speciation may also be controlled by reaction kinetics rather than by equilibrium. These factors highlight the importance of analytically interrogating medium speciation to gain insights into the complex interconnections between media components and bioprocess performance.


Assuntos
Técnicas de Cultura de Células , Metais , Animais , Disponibilidade Biológica , Íons , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...