Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753682

RESUMO

Many different kind of fluids in a wide variety of industries exist, such as two-phase and three-phase. Various combinations of them can be expected and gas-oil-water is one of the most common flows. Measuring the volume fraction of phases without separation is vital in many aspects, one of which is financial issues. Many methods are utilized to ascertain the volumetric proportion of each phase. Sensors based on measuring capacity are so popular because this kind of sensor operates seamlessly and autonomously without necessitating any form of segregation or disruption for measuring in the process. Besides, at the present moment, Artificial intelligence (AI) can be nominated as the most useful tool in several fields, and metering is no exception. Also, three main type of regimes can be found which are annular, stratified, and homogeneous. In this paper, volume fractions in a gas-oil-water three-phase homogeneous regime are measured. To accomplish this objective, an Artificial Neural Network (ANN) and a capacitance-based sensor are utilized. To train the presented network, an optimized sensor was implemented in the COMSOL Multiphysics software and after doing a lot of simulations, 231 different data are produced. Among all obtained results, 70 percent of them (161 data) are awarded to the train data, and the rest of them (70 data) are considered for the test data. This investigation proposes a new intelligent metering system based on the Multilayer Perceptron network (MLP) that can estimate a three-phase water-oil-gas fluid's water volume fraction precisely with a very low error. The obtained Mean Absolute Error (MAE) is equal to 1.66. This dedicates the presented predicting method's considerable accuracy. Moreover, this study was confined to homogeneous regime and cannot measure void fractions of other fluid types and this can be considered for future works. Besides, temperature and pressure changes which highly temper relative permittivity and density of the liquid inside the pipe can be considered for another future idea.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Água , Capacitância Elétrica , Gases/análise
2.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422139

RESUMO

This study compares the predictive performance of different classes of adaptive neuro-fuzzy inference systems (ANFIS) in predicting the permeability of carbon dioxide (CO2) in mixed matrix membrane (MMM) containing the SAPO-34 zeolite. The hybrid neuro-fuzzy technique uses the MMM chemistry, pressure, and temperature to estimate CO2 permeability. Indeed, grid partitioning (GP), fuzzy C-means (FCM), and subtractive clustering (SC) strategies are used to divide the input space of ANFIS. Statistical analyses compare the performance of these strategies, and the spider graph technique selects the best one. As a result of the prediction of more than 100 experimental samples, the ANFIS with the subtractive clustering method shows better accuracy than the other classes. The hybrid optimization algorithm and cluster radius = 0.55 are the best hyperparameters of this ANFIS model. This neuro-fuzzy model predicts the experimental database with an absolute average relative deviation (AARD) of less than 3% and a correlation of determination higher than 0.995. Such an intelligent model is not only straightforward but also helps to find the best MMM chemistry and operating conditions to maximize CO2 separation.

3.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890628

RESUMO

Instantaneously determining the type and amount of oil product passing through pipelines is one of the most critical operations in the oil, polymer and petrochemical industries. In this research, a detection system is proposed in order to monitor oil pipelines. The system uses a dual-energy gamma source of americium-241 and barium-133, a test pipe, and a NaI detector. This structure is implemented in the Monte Carlo N Particle (MCNP) code. It should be noted that the results of this simulation have been validated with a laboratory structure. In the test pipe, four oil products-ethylene glycol, crude oil, gasoil, and gasoline-were simulated two by two at various volume percentages. After receiving the signal from the detector, the feature extraction operation was started in order to provide suitable inputs for training the neural network. Four time characteristics-variance, fourth order moment, skewness, and kurtosis-were extracted from the received signal and used as the inputs of four Radial Basis Function (RBF) neural networks. The implemented neural networks were able to predict the volume ratio of each product with great accuracy. High accuracy, low cost in implementing the proposed system, and lower computational cost than previous detection methods are among the advantages of this research that increases its applicability in the oil industry. It is worth mentioning that although the presented system in this study is for monitoring of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.

4.
Sustain Cities Soc ; 69: 102814, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33654655

RESUMO

The outbreak of COVID-19 has posed significant challenges to governments across the world. The increase in hazardous infectious waste (HIW) caused by the pandemic is associated with the risk of transmitting the virus. In this study, hazardous waste includes infectious waste generated both by individuals and by hospitals during the COVID-19 pandemic. To control the outbreak by maintaining social distance and home quarantine protocols, daily necessities and health supplies must be provided to the people affected. Governments play an essential role in the management of the crisis, creating an elaborate plan for collecting HIW and providing necessities and health supplies. This paper proposes a leader-follower approach for hazardous infectious waste collection and government aid distribution to control COVID-19. At the top level of the model, government policies are designed to support people by distributing daily necessities and health supplies, and to support contractors by waste collection. The lower level of the model is related to the operational decisions of contractors with limited capacities. Due to the potential risk of virus transmission via contaminated waste, the proposed model considers the complications imposed on contractors at the lower level. Applying a stochastic programming approach, four possible scenarios are examined, dependent of the severity of the outbreak. As a solution approach, the Benders decomposition method is combined with Karush-Kuhn-Tucker conditions. The results show that government support, in addition to much better management of citizen demand, can control the spread of the virus by implementing quarantine decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...