Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557787

RESUMO

The synthesis of gold nanoparticles (GNPs) using chemical reduction in batch and microreactor methods has been reported. A parametric study of the effect of several parameters on the size of gold nanoparticles was performed in batch synthesis mode using the modified Martin method. The best-obtained conditions were used to synthesize gold nanoparticles using a glass chip microreactor, and the size of the resulting GNPs from both methods was compared. The presence of polyvinyl alcohol (SC) was used as a capping agent, and sodium borohydride (SB) was used as a reducing agent. Several parameters were studied, including HAuCl4, SC, SB concentrations, the volumetric ratio of SB to gold precursor, pH, temperature, and mixing speed. Various techniques were used to characterize the resulting nanoparticles, including Atomic Absorbance spectroscopy (AAS), Ultraviolet-visible spectroscopy (UV-Vis), and dynamic light scratching (DLS). Optimum conditions were obtained for the synthesis of gold nanoparticles. Under similar reaction conditions, the microreactor consistently produced smaller nanoparticles in the range of 10.42-11.31 nm with a reaction time of less than 1 min.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Extratos Vegetais/química
2.
Polymers (Basel) ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160447

RESUMO

In this study, polymer membrane(s) impregnated with carbon nanotubes (CNTs) were developed, characterized and evaluated for removing phenolic compounds from olive mill wastewater; thus, protecting the environment and public health. Polyethersulfone/functionalized, multi-walled carbon nanotube (PES/fCNTs) membranes were synthesized via the phase inversion method using PES and acid-treated CNTs. The prepared membranes were then characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and contact angle. Results obtained from this study indicate a more hydrophilic surface for the prepared PES/fCNTs membranes, with a higher pure water flux compared to the polyethersulfone (PES) membranes. In addition, the amount of fCNTs in the membranes was found to be the most significant factor affecting the morphology and water flux of the membranes. The PES/fCNTs membranes at 1 bar with 0 wt.% and 1 wt.% of CNTs showed water flux of 37.8 and 69.71 kg/h.m2, respectively. In addition, PES/fCNTs membranes with 0.5 wt.% fCNTs showed the highest total phenol content removal of 74%.

3.
AAPS PharmSciTech ; 23(1): 51, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013801

RESUMO

Nanofibers have many promising biomedical applications. They can be used for designing transdermal and dermal drug delivery systems. This project aimed to prepare and characterize polyvinylpyrrolidone-based nanofibers as a dermal and transdermal drug delivery system using pioglitazone. Pioglitazone is an oral antidiabetic drug. In addition, it can act as an inflammatory process modulator, making it a good candidate for managing different skin inflammatory conditions such as atopic dermatitis, skin ulcers, and diabetic foot wound healing. Several nanofiber formulations were prepared using the electrospinning method at different drug loadings, polyvinylpyrrolidone concentrations, and flow rates. A cast film with the exact composition of selected nanofiber formulations was prepared as a control. Nanofibers were characterized using a scanning electron microscope to calculate the diameter. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and powder X-ray diffraction were performed for physical and biochemical characterizations. In vitro release, drug loading efficiency, and swelling studies were performed. Ex vivo permeation studies were performed using Franz diffusion cells with or without applying a solid microneedle roller. Round uniform nanofibers with a smooth surface were obtained. The diameter of nanofibers was affected by the drug loading and polymer concentration. Fourier-transform infrared spectra showed a potential physical interaction between the drug and the polymer. According to X-ray diffraction, pioglitazone existed in an amorphous form in prepared nanofibers, with partial crystallinity in the casted film. Nanofibers showed a higher swelling rate compared to the casted film. The drug dissolution rate for nanofibers was 2.3-folds higher than the casted films. The polymer concentration affected the drug dissolution rate for nanofibers; however, drug loading and flow rate did not affect the drug dissolution rate for nanofibers. The application of solid microneedles slightly enhances the total amount of drug permeation. However, it did not affect the flux of the drug through the separated epidermis layer for pioglitazone. The drug permeation flux in nanofibers was approximately five times higher than the flux of the casted film. It was observed that pioglitazone is highly retained in skin layers. Graphical abstract.


Assuntos
Dermatite Atópica , Nanofibras , Liberação Controlada de Fármacos , Humanos , Pioglitazona , Povidona
4.
ACS Omega ; 5(43): 28046-28055, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163787

RESUMO

Nanocomposite materials based on metal nanoparticles and graphene oxide (GO) have gained increasing attention for their wide range of potential applications in various materials science fields. In this study, an efficient photocatalyst based on GO/ZnO nanocomposites with embedded metal nanoparticles was successfully synthesized via a simple one-pot method. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The photocatalytic activity of the synthesized nanocomposites was tested in the degradation of methylene blue (MB) dyes, as a model of water pollutants. A catalytic activity of 84% was achieved using a nanocomposite with a percentage of 3.125% GO, after 90 min sunlight irradiation. Furthermore, embedded copper and silver nanoparticles were used as dopants to study their effects on the activity of the photocatalyst. The GO-ZnO-Cu nanocomposite showed that the activity toward MB degradation was decreased by 50%, while a significant increase in the activity of MB degradation was achieved by the GO-ZnO-Ag nanocomposite. The removal efficiency of MB by the GO-ZnO-Ag nanocomposite reached 100% after 40 min of sunlight irradiation. Thus, the GO-ZnO-Ag nanocomposite has the potential to be an efficient adaptable photocatalyst for the photodegradation of organic dyes in industrial wastewater.

5.
J Environ Manage ; 271: 110970, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778274

RESUMO

The concentrative isolation of metal traces from aqueous solutions is of vital importance for environmental and industrial processes. Developing reliable systems of nanoscale that can be fine-tuned to effectively isolate these metals remains an intriguing aim which can potentially beget economic benefits and mitigate major environmental concerns. Here we demonstrate a conceptual metal extraction system where magnetic multi-wall carbon nanotubes (M-MWCNTs) are surface-equipped with a molecular network of polyethylenimine (PEI) to serve as a reusable nano-ionic exchanger, referred to as "M-MWCNTs-PEI". The designed nano-ionic exchanger forms readily stable suspensions with the metal-bearing aqueous solutions eliminating the need for vigorous agitation. Besides, it can be magnetically manipulated and separated in/from the solution. To exemplify its potential for the isolation of metal traces, the M-MWCNTs-PEI was tested with the uranium trace ions in aqueous media. The M-MWCNTs-PEI featured distinct sorption capacity of ~488 mg/g at pH 6, with moderate, but stable, binding affinity toward uranium ions. As such, excellent isolation performance is demonstrated while bound uranium ions are effectively concentrated and recovered from the interfacial PEI molecular network. This was efficiently achieved by exposing the loaded M-MWCNTs-PEI to solutions of small volumes and specific chemistry. Such combined qualities of large capacity and reusability have not been observed with the previously reported ion exchange systems. Altogether, our observations here demonstrate how functional systems of nanoscale can be adapted for industrial applications while this concept can be extended to address other important resources such as rare-earth and lanthanide elements.


Assuntos
Nanotubos de Carbono , Urânio , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Soluções , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA