Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38541486

RESUMO

Among solution-processable metal oxides, zinc oxide (ZnO) nanoparticle inks are widely used in inverted organic solar cells for the preparation, at relatively low temperatures (<120 °C), of highly efficient electron-transporting layers. There is, however, a recent interest to develop more sustainable and less impacting methods/strategies for the preparation of ZnO NPs with controlled properties and improved performance. To this end, we report here the synthesis and characterization of ZnO NPs obtained using alternative reaction solvents derived from renewable or recycled sources. In detail, we use (i) recycled methanol (r-MeOH) to close the loop and minimize wastes or (ii) bioethanol (b-EtOH) to prove the effectiveness of a bio-based solvent. The effect of r-MeOH and b-EtOH on the optical, morphological, and electronic properties of the resulting ZnO NPs, both in solution and thin-films, is investigated, discussed, and compared to an analogous reference material. Moreover, to validate the properties of the resulting materials, we have prepared PTB7:PC71BM-based solar cells containing the different ZnO NPs as a cathode interlayer. Power conversion efficiencies comparable to the reference system (≈7%) were obtained, validating the proposed alternative and more sustainable approach.

2.
ACS Appl Mater Interfaces ; 12(25): 28404-28415, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476409

RESUMO

The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.

3.
ACS Appl Mater Interfaces ; 11(47): 44820-44828, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31690074

RESUMO

Hybrid organic-inorganic materials are a new class of materials used as interfacial layers (ILs) in polymer solar cells (PSCs). A hybrid material, composed of antimony as the inorganic part and diaminopyridine as the organic part, is synthesized and described as a new material for application as the electron extraction layer (EEL) in PSCs and compared to the recently demonstrated hybrid materials using bismuth instead of antimony. The hybrid compound is solution-processed onto the photoactive layer based on a classical blend, which is composed of a PTB7-Th low band gap polymer as the donor mixed with PC70BM fullerene as the acceptor material. By using a regular device structure and an aluminum cathode, the solar cells exhibited a power conversion efficiency of 8.42%, equivalent to the reference device using ZnO nanocrystals as the IL, and strongly improved compared to the bismuth-based hybrid material. The processing of extraction layers up to a thickness of 80 nm of such hybrid material reveals that the change from bismuth to antimony has strongly improved the charge extraction and transport properties of the hybrid materials. Interestingly, nanocomposites made of the hybrid material mixed with ZnO nanocrystals in a 1:1 ratio further improved the electronic properties of the extraction layers, leading to a power conversion efficiency of 9.74%. This was addressed to a more closely packed morphology of the hybrid layer, leading to further improved electron extraction. It is important to note that these hybrid EELs, both pure and ZnO-doped, also greatly improved the stability of solar cells, both under dark storage in air and under lighting under an inert atmosphere compared to solar cells treated with ZnO intermediate layers.

4.
ACS Appl Mater Interfaces ; 10(20): 17309-17317, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29652470

RESUMO

Organic-inorganic hybrid materials composed of bismuth and diaminopyridine are studied as novel materials for electron extraction layers in polymer solar cells using regular device structures. The hybrid materials are solution processed on top of two different low band gap polymers (PTB7 or PTB7-Th) as donor materials mixed with fullerene PC70BM as the acceptor. The intercalation of the hybrid layer between the photoactive layer and the aluminum cathode leads to solar cells with a power conversion efficiency of 7.8% because of significant improvements in all photovoltaic parameters, that is, short-circuit current density, fill factor, and open-circuit voltage, similar to the reference devices using ZnO as the interfacial layer. However when using thick layers of such hybrid materials for electron extraction, only small losses in photocurrent density are observed in contrast to the reference material ZnO of pronounced losses because of optical spacer effects. Importantly, these hybrid electron extraction layers also strongly improve the device stability in air compared with solar cells processed with ZnO interlayers. Both results underline the high potential of this new class of hybrid materials as electron extraction materials toward robust processing of air stable organic solar cells.

5.
ACS Appl Mater Interfaces ; 10(4): 3874-3884, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29327577

RESUMO

The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:[6,6]-phenyl-C71-butyric acid methyl ester (PTB7:PC70BM) blend as photoactive layer in combination with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as hole extraction layer is used here to focus on the impact of electron extraction layer (EEL) on the thermal stability of solar cells. Solar cells processed with densely packed ZnO nanoparticle layers still show 92% of the initial efficiency after constant annealing during 1 day at 140 °C, whereas partially covering ZnO layers as well as an evaporated calcium layer leads to performance losses of up to 30%. This demonstrates that the nature and morphology of EELs highly influence the thermal stability of the device. We extend our study to thermally unstable PTB7:[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) blends to highlight the impact of ZnO on the device degradation during annealing. Importantly, only 12% loss in photocurrent density is observed after annealing at 140 °C during 1 day when using closely packed ZnO. This is in stark contrast to literature and addressed here to the use of a stable double-sided confinement during thermal annealing. The underlying mechanism of the inhibition of photocurrent losses is revealed by electron microscopy imaging and spatially resolved spectroscopy. We found that the double-sided confinement suppresses extensive fullerene diffusion during the annealing step, but with still an increase in size and distance of the enriched donor and acceptor domains inside the photoactive layer by an average factor of 5. The later result in combination with comparably small photocurrent density losses indicates the existence of an efficient transport of minority charge carriers inside the donor and acceptor enriched phases in PTB7:PC60BM blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA