Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 313: 115026, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405546

RESUMO

Carbon dioxide (CO2) emissions from fossil fuel combustion have been linked to increased average global temperatures, a global challenge for many decades. Mitigating CO2 concentration in the atmosphere is a priority for the protection of the environment. This is a comparison of the three main technological categories available for CO2 capture and storage. They include: oxy-fuel combustion, pre-combustion, and post-combustion. Each capture technology has inherent benefits and disadvantages in cost, implementation, and flexibility, but post-combustion CO2 capture has demonstrated the most promising results in typical power plant configurations. This paper presents a review of different post-combustion CO2 capture materials; solvents, membranes, and adsorbents, focusing on economical and environmentally safe low to high temperature solid adsorbents. Furthermore, the authors summarize the advantages and limitations of the materials investigated to provide insight into the challenges and opportunities currently facing the development of post-combustion CO2 capture technologies. The solid sorbents currently available for CO2 capture are also reviewed in detail, including physical and chemical properties, reactions, and current research efforts on improvement.


Assuntos
Dióxido de Carbono , Combustíveis Fósseis , Adsorção , Dióxido de Carbono/análise , Centrais Elétricas , Temperatura
2.
J Environ Manage ; 299: 113597, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492435

RESUMO

This review discusses the technical aspects of improving the efficiency of the pyrolysis of lignocellulosic materials to increase the yield of the main products, which are bio-oil, biochar, and syngas. The latest aspects of catalyst development in the biomass pyrolysis process are presented focusing on the various catalyst structures, the physical and chemical performance of the catalysts, and the mode of the catalytic reaction. In bio-oil upgrading, atmospheric catalytic cracking is shown to be more economical than catalytic hydrotreating. Catalysts help in the upgrading process by facilitating several reaction pathways such as polymerization, aromatization, and alkyl condensation. However, the grade of bio-oil must be similar to that of diesel fuel. Hence, the properties of the pyrolysis liquid such as viscosity, kinematic viscosity, density, and boiling point are important and have been highlighted. Switching between types of catalysts has a significant influence on the final product yields and exhibits different levels of durability. Various catalysts have been shown to enhance gas yield at the expense of the yields of bio-oil and biochar that shift the overall purpose of pyrolysis. Therefore, the catalytic activity as a function of temperature, pressure, and catalyst biomass ratio is discussed in detail. These operational parameters are crucial because they determine the overall yield as well as the ratio of the oil, char, and gas products. Although significant progress has been made in catalytic pyrolysis, the economic feasibility of the process and the catalyst cost remain the major obstacles. This review concludes that the catalytic process would be feasible when the fuel selling price is reduced to less than US $ 4 per gallon of gasoline-equivalent, and when the selectivity of catalysts is further enhanced.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Temperatura Alta , Lignina
3.
Sci Total Environ ; 759: 143528, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33234276

RESUMO

Photovoltaic (PV) systems are regarded as clean and sustainable sources of energy. Although the operation of PV systems exhibits minimal pollution during their lifetime, the probable environmental impacts of such systems from manufacturing until disposal cannot be ignored. The production of hazardous contaminates, water resources pollution, and emissions of air pollutants during the manufacturing process as well as the impact of PV installations on land use are important environmental factors to consider. The present study aims at developing a comprehensive analysis of all possible environmental challenges as well as presenting novel design proposals to mitigate and solve the aforementioned environmental problems. The emissions of greenhouse gas (GHG) from various PV systems were also explored and compared with fossil fuel energy resources. The results revealed that the negative environmental impacts of PV systems could be substantially mitigated using optimized design, development of novel materials, minimize the use of hazardous materials, recycling whenever possible, and careful site selection. Such mitigation actions will reduce the emissions of GHG to the environment, decrease the accumulation of solid wastes, and preserve valuable water resources. The carbon footprint emission from PV systems was found to be in the range of 14-73 g CO2-eq/kWh, which is 10 to 53 orders of magnitude lower than emission reported from the burning of oil (742 g CO2-eq/kWh from oil). It was concluded that the carbon footprint of the PV system could be decreased further by one order of magnitude using novel manufacturing materials. Recycling solar cell materials can also contribute up to a 42% reduction in GHG emissions. The present study offers a valuable management strategy that can be used to improve the sustainability of PV manufacturing processes, improve its economic value, and mitigate its negative impacts on the environment.

4.
Membranes (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233819

RESUMO

In the present work, we developed a novel method for transferring monolayer graphene onto four different commercial hydrophilic micro/ultra-filtration substrates. The developed method used electrostatic charging to maintain the contact between the graphene and the target substrate intact during the etching step through the wet transfer process. Several measurement/analysis techniques were used in order to evaluate the properties of the surfaces and to assess the quality of the transferred graphene. The techniques included water contact angle (CA), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Potassium chloride (KCl) ions were used for the transport study through the developed graphene-based membranes. The results revealed that 70% rejection of KCI ions was recorded for the graphene/polyvinylidene difluoride (PVDF1) membrane, followed by 67% rejection for the graphene/polyethersulfone (PES) membrane, and 65% rejection for graphene/PVDF3 membrane. It was revealed that the smoothest substrate was the most effective in rejecting the ions. Although defects such as tears and cracks within the graphene layer were still evolving in this new transfer method, however, the use of Nylon 6,6 interfacial polymerization allowed sealing the tears and cracks within the graphene monolayer. This enhanced the KCl ions rejection of up to 85% through the defect-sealed graphene/polymer composite membranes.

5.
Bioresour Technol ; 192: 529-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26086086

RESUMO

In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation.


Assuntos
Etanol/metabolismo , Peróxido de Hidrogênio/química , Papel , Esgotos/química , Esgotos/microbiologia , Leveduras/metabolismo , Biocombustíveis/microbiologia , Carbonato de Cálcio/química , Celulase/química , Etanol/isolamento & purificação , Estudos de Viabilidade , Hidrólise , Resíduos Industriais/prevenção & controle
6.
Appl Biochem Biotechnol ; 98-100: 849-61, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12018307

RESUMO

The effect of process stream recirculation on ethanol production from steam- pretreated softwood based on simultaneous saccharification and fermentation (SSF) was investigated for two process configurations. In the first configuration, a part of the stillage stream after distillation was recycled and, in the second configuration, the liquid after SSF was recycled. The aim was to minimize the energy consumption in the distillation of the fermentation broth and in the evaporation of the stillage, as well as the use of fresh water. However, recirculation leads to an increased concentration of nonvolatiles in the first configuration, and of both volatiles and nonvolatiles in the second configuration. These substances might be inhibitory to the enzymes and the yeast in SSF. When 60% of the fresh water was replaced by stillage, the ethanol yield and the productivity were the same as for the configuration without recirculation. The ethanol production cost was reduced by 17%. In the second configuration, up to 40% of the fresh water could be replaced without affecting the final ethanol yield, although the initial ethanol productivity decreased. The ethanol production cost was reduced by 12%. At higher degrees of recirculation, fermentation was clearly inhibited, resulting in a decrease in ethanol yield while hydrolysis seemed unaffected.


Assuntos
Metabolismo dos Carboidratos , Etanol/metabolismo , Madeira , Biotecnologia/instrumentação , Biotecnologia/métodos , Celulose/metabolismo , Meios de Cultura , Etanol/isolamento & purificação , Fermentação , Combustíveis Fósseis , Água Doce , Indicadores e Reagentes , Cinética , Lignina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Dióxido de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...