Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861564

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a cancer type that is thought to be influenced by human papillomaviruses (HPVs) and human polyomaviruses (HPyVs). In Egypt, CRC ranks as the 7th most common cancer, accounting for 3.47% of male cancers and 3% of female cancers. However, there is currently a lack of information regarding the presence of PyVs and HPVs co-infection specifically in CRC cases in Egypt. Therefore, the aim of this study was to investigate the occurrence of HPVs and HPyVs (JCPyV, BKPyV, and SV40) infections, as well as co-infections, among CRC patients in Egypt. Additionally, the study aimed to assess any potential association between these viral infections and tumor stages. METHODS: In the present study, we analyzed a total of 51 tissue samples obtained from Egyptian CRC patients, along with 19 polyps' samples. Our investigation focused on the detection and genotyping of HPyVs using Real-Time PCR. Additionally, we employed real-time PCR for the detection of HPVs, and for their genotyping, we utilized a combination of PCR amplification followed by sequencing. RESULTS: In our study, we found evidence of HPyVs infection in the CRC patients, specifically SV40 (25.5%) and BKPyV (19.6%). However, JCPyV was not detected in the samples that were examined. Additionally, we discovered that HPV was present in 43.1% of the CRC patients. When considering viral co-infections, 19.6% of the CRC samples showed coexistence of multiple viruses, while no co-infections were found in the polyps samples. Importantly, we observed a significant correlation between the presence of HPVs and advanced colorectal tumor grades B2 and D. CONCLUSION: Our findings provide valuable data for the detection of oncogenic viruses in colorectal cancer (CRC) and underscore the association of viral co-infections with advanced tumor stages. However, further research with larger cohorts is necessary to validate these findings and strengthen their significance in the field of CRC.


Assuntos
Neoplasias Colorretais , Papillomaviridae , Infecções por Papillomavirus , Infecções por Polyomavirus , Polyomavirus , Humanos , Neoplasias Colorretais/virologia , Egito/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/complicações , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/complicações , Polyomavirus/isolamento & purificação , Polyomavirus/genética , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Estudos de Casos e Controles , Coinfecção/virologia , Coinfecção/epidemiologia , Idoso , Adulto , Infecções Tumorais por Vírus/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/complicações , Genótipo
2.
Cureus ; 16(2): e53496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440013

RESUMO

BACKGROUND: The Omicron variant (B.1.1.529 lineage) of SARS-CoV-2 represents a substantial global health challenge due to its high transmissibility and potential resistance to immunity from vaccines or previous infections. Among the rapidly evolving Omicron lineages, the BA.2.75 and the emerging CH.1.1 have garnered attention. While BA.2.75 is marked by mutations that may enhance immune evasion, CH.1.1 is distinguished by the S: L452R mutation, linked to increased pathogenicity and transmission. Initially identified in India by the end of 2021, these variants have exhibited global dissemination, signaling an urgent need to track and analyze their progression. METHODS: In this study, the genomic and geographical distribution data of CH.1.1 were collected from the Global Initiative on Sharing Avian Influenza Data (GISAID), PANGOLIN, CoV-Spectrum, and NextStrain databases. Due to the unavailability of epidemiological and genomic data of the CH.1.1 lineage, PubMed and ScienceDirect were used as sources of the phenotypic data of the lineage variations. Amino acid variations utilized in the data mining included S: R346T, S: K444T, S: L452R, and S: F486S. RESULTS: The current epidemiological data indicate that CH.1.1 is more likely to become one of the dominant spreading lineages in the United Kingdom, New Zealand, Australia, and the United States based on a 32% growth advantage, present CH.1.1 lineage cases number, and the amino acid variation's impact. CONCLUSION: A significant increase in the newly detected lineage CH.1.1 is highly anticipated. The rise in the detected sequences number from 13,231 on January 21, 2023, to 23,181 on February 6, 2023, supports the prediction and growth advantage of the lineage detected cases. Increases in viral transmissibility caused by higher affinity to ACE2 receptors and immune evasion are deduced from amino acid variations analyzed in the study.

3.
Int J Biol Macromol ; 262(Pt 2): 130146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365140

RESUMO

Integrin-linked kinase (ILK), a ß1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23µM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Noscapina , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
4.
Pathol Res Pract ; 253: 154957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000201

RESUMO

The long non-coding RNA (lncRNA) HOTAIR occupies a central position in the complex domain of cancer biology, particularly concerning its intricate interplay with the Wnt/ß-catenin signaling pathway. This comprehensive review explores the multifaceted interactions between HOTAIR and the Wnt/ß-catenin cascade, elucidating their profound function in cancer growth, progression, and therapeutic strategies. The study commences by underscoring the pivotal role of the Wnt/ß-catenin cascade in governing essential cellular activities, emphasizing its dysregulation as a linchpin in cancer initiation and advancement. It introduces HOTAIR as a crucial regulatory entity, influencing gene expression in both healthy and diseased. The core of this review plunges into the intricacies of HOTAIR's engagement with Wnt/ß-catenin signaling. It unravels how HOTAIR, through epigenetic modifications and transcriptional control, exerts its influence over key pathway constituents, including ß-catenin, Wnt ligands, and target genes. This influence drives unchecked cancer cell growth, invasion, and metastasis. Furthermore, the review underscores the clinical significance of the HOTAIR-Wnt/ß-catenin interplay, elucidating its associations with diverse cancer subtypes, patient prognoses, and prospects as a therapy. It provides insights into ongoing research endeavors to develop HOTAIR-targeted treatments and initiatives to facilitate aberrant Wnt/ß-catenin activation. Concluding on a forward-looking note, the article accentuates the broader implications of HOTAIR's involvement in cancer biology, including its contributions to therapy resistance and metastatic dissemination. It underscores the importance of delving deeper into these intricate molecular relationships to pave the way for groundbreaking cancer treatment.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Processos Neoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/genética
5.
Immunol Res ; 72(2): 242-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37880483

RESUMO

Millions of people's lives are being devastated by dengue virus (DENV), a severe tropical and subtropical illness spread by mosquitoes and other vectors. Dengue fever may be self-limiting like a common cold or can rapidly progress to catastrophic dengue hemorrhagic fever or dengue shock syndrome. With four distinct dengue serotypes (DENV1-4), each with the potential to contain antibody-boosting complicated mechanisms, developing a dengue vaccine has been an ambitious challenge. Here, we used a computational pan-vaccinomics-based vaccine design strategy (reverse vaccinology) for all 4 DENV serotypes acquired from different regions of the world to develop a new and safe vaccine against DENV. Consequently, only five mapped epitopes from all the 4 serotypes were shown to be extremely effective for the construction of multi-epitope vaccine constructs. The suggested vaccine construct V5 from eight vaccine models was thus classified as an antigenic, non-allergenic, and stable vaccine model. Moreover, molecular docking and molecular dynamics simulation was performed for the V5 vaccine candidate against the HLAs and TRL2 and 4 immunological receptors. Later, the vaccine sequence was transcribed into the cDNA to generate an expression vector for the Escherichia coli K12 strain. Our research suggests that this vaccine design (V5) has promising potential as a dengue vaccine. However, further experimental analysis into the vaccine's efficacy might be required for the V5 proper validation to combat all DENV serotypes.

6.
J Appl Genet ; 65(2): 341-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38030871

RESUMO

The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.


Assuntos
COVID-19 , Furanos , Lignanas , Olea , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus
7.
Front Microbiol ; 14: 1232413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795308

RESUMO

The microbiota of the gut has continued to co-evolve alongside their human hosts conferring considerable health benefits including the production of nutrients, drug metabolism, modulation of the immune system, and playing an antagonistic role against pathogen invasion of the gastrointestinal tract (GIT). The gut is said to provide a habitat for diverse groups of microorganisms where they all co-habit and interact with one another and with the immune system of humans. Phages are bacterial parasites that require the host metabolic system to replicate via the lytic or lysogenic cycle. The phage and bacterial populations are regarded as the most dominant in the gut ecosystem. As such, among the various microbial interactions, the phage-bacteria interactions, although complex, have been demonstrated to co-evolve over time using different mechanisms such as predation, lysogenic conversion, and phage induction, alongside counterdefense by the bacterial population. With the help of models and dynamics of phage-bacteria interactions, the complexity behind their survival in the gut ecosystem was demystified, and their roles in maintaining gut homeostasis and promoting the overall health of humans were elucidated. Although the treatment of various gastrointestinal infections has been demonstrated to be successful against multidrug-resistant causative agents, concerns about this technique are still very much alive among researchers owing to the potential for phages to evolve. Since a dearth of knowledge exists regarding the use of phages for therapeutic purposes, more studies involving experimental models and clinical trials are needed to widen the understanding of bacteria-phage interactions and their association with immunological responses in the gut of humans.

8.
Front Microbiol ; 14: 1282257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886075

RESUMO

Background: African animal trypanosomiasis hinders sustainable livestock productivity in sub-Saharan Africa. About 17 million infected cattle are treated with trypanocides annually but most of the drugs are associated with drawbacks, necessitating the search for a promising chemotherapeutic agent. Objectives: In this study, the effects of ß-sitosterol on Trypanosoma congolense infection were investigated along with its effect on the trans-sialidase gene expressions. Results: Oral treatment with ß-sitosterol at 15 and 30 mg/kg body weight (BW) for 14 days significantly (p < 0.05) reduced parasitemia and ameliorated the parasite-induced anemia. Also, the parasite-induced increase in serum urea level and renal histopathological damage scores in addition to renal hypertrophy was significantly (p < 0.05) reverted following treatment with 30 mg/kg BW ß-sitosterol. The compound also significantly (p < 0.05) down-regulated the expression of TconTS1 but not TconTS2, TconTS3, and TconTS4. Correlation analysis between free serum sialic acid with the TconTS1 and TconTS2 gene variants revealed negative correlations in the ß-sitosterol-treated groups although they were non-significant (p > 0.05) in the group treated with 15 mg/kg BW ß-sitosterol. Similarly, a non-significant negative (p > 0.05) correlation between the biomolecule and the TconTS3 and TconTS4 gene variants was observed in the ß-sitosterol-treated groups while positive correlations were observed in the infected untreated control group. Conclusion: The observed effect of ß-sitosterol on T. congolense infection could make the compound a possible template for the design of novel trypanocides.

9.
Biomedicines ; 11(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37626655

RESUMO

Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.

10.
J Biomol Struct Dyn ; : 1-22, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37599459

RESUMO

The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.

11.
Med Oncol ; 40(10): 277, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624423

RESUMO

Metformin is a regularly prescribed and low-cost generic medication. Metformin has been proposed as a target for Dipeptidyl-peptidase 4 (DPP4) expression in various clinical disorders. We provide insilco investigations on molecular docking and dynamic modeling of metformin and DPP4 potential interactions. Moreover, we conducted bioinformatic studies to highlight the clinical significance of DPP4 expression and mutation in various types of malignancies, as well as the invasion of different immune cells into the tumor microenvironment. We believe the present proposal's findings have crucial implications for understanding how metformin may confer health advantages by targeting DPP4 expression in malignancies.


Assuntos
Dipeptidil Peptidase 4 , Metformina , Humanos , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4/genética , Simulação por Computador , Relevância Clínica , Metformina/farmacologia , Metformina/uso terapêutico
12.
Food Sci Nutr ; 11(6): 3516-3534, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324863

RESUMO

Palm kernel meal (PKM) has been shown to be a high-quality protein source in ruminant feeds. This study focused on the effects of feed, supplemented with different amounts of PKM (ZL-0 as blank group, and ZL-15, ZL-18, and ZL-21 as treatment group), on the quality and flavor profile of Tibetan sheep meat. Furthermore, the deposition of beneficial metabolites in Tibetan sheep and the composition of rumen microorganisms on underlying regulatory mechanisms of meat quality were studied based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry as well as 16S rDNA sequencing. The results of the study showed that Tibetan sheep in the ZL-18 group exhibited superior eating quality and flavor profile while depositing more protein and fat relative to the other groups. The ZL-18 group also changed significantly in terms of the concentration and metabolic pathways of meat metabolites, as revealed by metabolomics. Metabolomics and correlation analyses finally showed that PKM feed mainly affected carbohydrate metabolism in muscle, which in turn affects meat pH, tenderness, and flavor. In addition, 18% of PKM increased the abundance of Christensenellaceae R-7 group, Ruminococcaceae UCG-013, Lachnospiraceae UCG-002, and Family XIII AD3011 group in the rumen but decreased the abundance of Prevotella 1; the above bacteria groups regulate meat quality by regulating rumen metabolites (succinic acid, DL-glutamic acid, etc.). Overall, the addition of PKM may improve the quality and flavor of the meat by affecting muscle metabolism and microorganisms in the rumen.

13.
Med Oncol ; 40(5): 142, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039909

RESUMO

Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and have been linked to immunosuppression and poor prognosis. TAMs have been shown to be harmful in ovarian cancer (OC), with a positive correlation between their high levels of tumors and poor overall patient survival. These cells are crucial in the progression and chemoresistance of OC. The primary pro-tumoral role of TAMs is the release of cytokines, chemokines, enzymes, and exosomes that directly enhance the invasion potential and chemoresistance of OC by activating their pro-survival signalling pathways. TAMs play a crucial role in the metastasis of OC in the peritoneum and ascities by assisting in spheroid formation and cancer cell adhesion to the metastatic regions. Furthermore, TAMs interact with tumor protein p53 (TP53), exosomes, and other immune cells, such as stem cells and cancer-associated fibroblasts (CAFs) to support the progression and metastasis of OC. In this review we revisit development, functions and interactions of TAMs in the TME of OC patients to highlight and shed light on challenges and excitement down the road.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Macrófagos , Transdução de Sinais , Citocinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral
14.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830327

RESUMO

Antibiotic resistance has emerged as a significant issue to be resolved around the world. Bacteriophage (phage), in contrast to antibiotics, can only kill the target bacteria with no adverse effect on the normal bacterial flora. In this review, we described the biological characteristics of phage, and summarized the phage application in China, including in mammals, ovipara, aquatilia, and human clinical treatment. The data showed that phage had a good therapeutic effect on drug-resistant bacteria in veterinary fields, as well as in the clinical treatment of humans. However, we need to take more consideration of the narrow lysis spectrum, the immune response, the issues of storage, and the pharmacokinetics of phages. Due to the particularity of bacteriophage as a bacterial virus, there is no unified standard or regulation for the use of bacteriophage in the world at present, which hinders the application of bacteriophage as a substitute for antibiotic biological products. We aimed to highlight the rapidly advancing field of phage therapy as well as the challenges that China faces in reducing its reliance on antibiotics.

15.
Microorganisms ; 11(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36838339

RESUMO

Antibiotics can promote livestock growth but have side effects, so the search for safe and effective alternatives to antibiotics is urgent. This study aimed to evaluate the effect of supplementing cattle feed with tea saponins on ruminal bacteria and fungi. Sixteen Qinchuan beef cattle with a live body weight of 250 ± 10 kg were divided into four groups (four animals in each group) using a completely randomized experimental design. Four different levels of tea saponins were provided to the Qinchuan cattle as treatments, including 0 g/cattle per day control, CON), 10 g/cattle per day (low-level, LT), 20 g/cattle per day (medium-level, MT) and 30 g/cattle per day (high-level, HT). The pre-feeding period was 10 days and the official period was 80 days in this experiment. After 90 days of feeding, the rumen fluid from sixteen Qinchuan beef cattle was collected using an oral stomach tube for evaluating changes in ruminal microbiota and rumen fermentation parameters. Results indicate that the total VFAs and proportions of propionate in the LT group was significantly higher than that in the CON and HT groups (p < 0.05). For ruminal bacteria, results indicate that the Chao1 index of the MT group was significantly lower than the CON and HT groups (p < 0.05). The phyla Bacteroidetes and Firmicutes were found to be the most abundant in all treatment groups, with the LT group having significantly increased relative abundances of Proteobacteria, Actinobacteria and Ascomycota at the phylum level (p < 0.05). The relative abundance of Bacteroides was found to be relatively lower in the LT, MT and HT treatment groups compared with the CON treatment group at the genus level (p < 0.05). For ruminal fungi, the LT treatment group was found to have higher relative abundances of Saccharomyces and Aspergillus, and lower relative abundances of Succiniclasticum and Bacteroides at the at the phylum level (p < 0.05). Compared with the CON treatment group, a significant increase in the relative abundance of Saccharomyces and Aspergillus were observed in the LT treatment group at the genus level (p < 0.05). PICRUSt analyses identified pathways associated with Xenobiotic biodegradation and metabolism and glycolysisIII to be significantly enriched in the LT and HT treatment groups (p < 0.05). These findings could provide insights on how tea saponins may influence ruminal bacteria and fungi, providing a theoretical basis for replacing antibiotics with tea saponins for promoting growth in cattle.

16.
Saudi Pharm J ; 30(8): 1120-1136, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36164578

RESUMO

Allovahlkampfia spelaea (A. spelaea) is a free-living amoeba, proved to cause Acanthamoeba-like keratitis with quite difficult treatment. This study aimed to evaluate the amoebicidal effect of Allium cepa (A. cepa) on A. spelaea trophozoites and cysts both in vitro and in vivo using Chinchilla rabbits as an experimental model of this type of keratitis. Chemical constituents of the aqueous extract of A. cepa were identified using Liquid Chromatography-mass Spectrometry (LC-MS). In vitro, A. cepa showed a significant inhibitory effect on trophozoites and cysts compared to the reference drug, chlorhexidine (CHX) as well as the non-treated control (P < 0.05) with statistically different effectiveness in terms of treatment durations and concentrations. No cytotoxic effect of A. cepa on corneal cell line was found even at high concentrations (32 mg/ml) using agar diffusion method. The in vivo results confirmed the efficacy of A. cepa where the extract enhanced keratitis healing with complete resolution of corneal ulcers in 80% of the infected animals by day 14 (post infection)pi compared to 70% recovery with CHX after 20 treatment days. The therapeutic effect was also approved at histological, immune-histochemical, and parasitological levels. Our findings support the potential use of A. cepa as an effective agent against A. spelaea keratitis.

17.
PLoS One ; 17(7): e0267591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802617

RESUMO

Free-living amoebae (FLA) are gaining attention due to the increasing number of related grave central nervous system (CNS) and sight-threatening eye infections and their role as Trojan horses for many bacteria and viruses. This study was conducted in Assiut City, Egypt to detect the presence of FLA in different water sources using morphological and molecular approaches and determine their potential pathogenicity. A total of 188 water samples (100 tap, 80 tank, and 8 swimming pool samples) were collected, cultivated on non-nutrient agar seeded with Escherichia coli, and inspected for FLA. Thermo- and osmo-tolerance assays were performed to determine their pathogenicity. Polymerase chain reaction and sequence analysis were performed to confirm the identification and analyze the genotype. Overall, 52 samples (27.7%) were positive for FLA. Of these, 20.7% were identified as Acanthamoeba, 1.6% as Vahlkampfiidae, and 5.3% as mixed Acanthamoeba and Vahlkampfiidae. Seven species of Acanthamoeba were recognized, of which A. triangularis, A. polyphaga, A. lenticulata, and A. culbertsoni are thermo- and osmo-tolerant, and A. astronyxis, A. comandoni, and A. echinulata are non-thermo- and non-osmo-tolerant. The phylogeny analysis revealed T4 and T7 genotypes. Among Vahlkampfiids, 61.5% were identified as thermo- and osmo-tolerant Vahlkampfia, and 30.8% were identified as non-pathogenic Naegleria. One isolate (7.7%) was identified as potentially pathogenic Allovahlkampfia, as confirmed by sequencing. This is the first report documenting the occurrence and phylogeny of waterborne FLA (Acanthamoeba/Vahlkampfiidae) in Assiut, Egypt. The presence of potentially pathogenic FLA highlights the possible health hazards and the need for preventive measures.


Assuntos
Acanthamoeba , Amoeba , Naegleria , Acanthamoeba/genética , Egito , Naegleria/genética , Água
18.
Ann Parasitol ; 68(2): 323-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35810364

RESUMO

Schistosomosis is a worldwide tropical disease primarily caused by Schistosoma mansoni. Praziquantel is the only available drug for controlling schistosomosis, with many challenges. This study aims to evaluate the in vitro anti-Schistosoma effect of Ganoderma lucidum (G. lucidum) against adult and larval stages of Schistosoma based on the prediction of the binding activity of G. lucidum protein with proteins of various stages of S. mansoni by molecular docking to confirm its inhibitory potential through an insilico study. Results showed that Leu143, Ser165, Met214, and Asn213 were the primary crucial amino acids involved in the binding, with a promising large area of interactions between the two studied proteins. The in vitro study evaluated the motility and survival of adult and larval stages, compared to praziquantel and niclosamide, respectively. There was a significant reduction in the motility of adults after the two-hour incubation, with all concentrations and 100% death of all parasites with the minimal concentration (10 µg/ml) within 4 and 6 h of incubation (P<0.01). Regarding the cercariae, at a concentration of 10 µg/ml, all the cercariae (100%) died (P<0.01) after 15 min, and the miracidial complete mortality rate (100%) (P<0.01) occurred at a concentration of 10 µg/ml after 8 min. This study first predicted the binding activity of G. lucidum protein with proteins of S. mansoni at various stages and proved the anti-Schistosoma effect of G. lucidum in vitro, considered a promising treatment for schistosomosis.


Assuntos
Reishi , Esquistossomose , Animais , Larva , Simulação de Acoplamento Molecular , Praziquantel/farmacologia , Schistosoma mansoni
19.
Infect Drug Resist ; 15: 171-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087280

RESUMO

BACKGROUND: Waterborne cryptosporidiosis is the second cause of diarrhea in young children and immunocompromised hosts after rotavirus. Except for nitazoxanide (NTZ), there is no accredited cryptosporidiosis treatment to date. Therefore, there is an urgent need to find an effective and safe treatment for cryptosporidiosis. This study aimed to investigate the possible anti-protozoal effects of Syzygium aromaticum (clove) oil, Anethum graveolens (dill) seeds oil, Lactobacillus acidophilus LB, and zinc against Cryptosporidium parvum in comparison to NTZ. METHODS: Besides the negative control, mice from six experimental groups (T1-T6) were infected with Cryptosporidium parvum oocysts. On the seventh day post-infection (PID), mice from five groups were treated for 8 consecutive days with NTZ, clove oil, dill seed oil, Lactobacillus acidophilus LB, and zinc commercial forms (T2-T5). Oocysts shedding rate, differences of mice body weight, serum IL10, and TNF-α, cryptosporidial antigen, and cd3 at the intestinal mucosa were evaluated at the end of the experiment. RESULTS: The mean of the C. parvum oocysts' shedding rate was significantly lower in all treated groups than in the non-treated group. The oocysts reduction rate was the highest in zinc-treated mice (98.3%), Lactobacillus acidophilus LB and dill-treated groups (95.77%), and the NTZ-treated group (91.55%). Clove oil was the least effective, with a 74.65% reduction rate. Excluding the clove oil-treated group, immunohistochemical analysis revealed the clearance of the Cryptosporidium antigen in the intestinal tissue in all treated groups. CONCLUSION: The study has provided a rational basis for using these safe, cheap, and commercially available alternatives in treating cryptosporidiosis combined with NTZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...