Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
2.
Hum Genet ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743093

RESUMO

Germline gain of function variants in the oncogene ABL1 cause congenital heart defects and skeletal malformations (CHDSKM) syndrome. Whether a corresponding ABL1 deficiency disorder exists in humans remains unknown although developmental defects in mice deficient for Abl1 support this notion. Here, we describe two multiplex consanguineous families, each segregating a different homozygous likely loss of function variant in ABL1. The associated phenotype is multiple congenital malformations and distinctive facial dysmorphism that are opposite in many ways to CHDSKM. We suggest that a tight balance of ABL1 activity is required during embryonic development and that both germline gain of function and loss of function variants result in distinctively different allelic congenital malformation disorders.

3.
Front Pediatr ; 12: 1392444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716412

RESUMO

Background: Genetic disorders account for a large percentage of admissions and outpatient visits to children's hospitals around the world. Clinical exome sequencing (CES) is a valuable diagnostic tool in the workup of these disorders; however, it is not routinely requested by general pediatricians. This may represent a missed opportunity to increase patient access to this powerful diagnostic tool. In our institution, general pediatricians can directly order CES. In this context, this study aims to evaluate the appropriateness of CES and its clinical utility when ordered by general pediatricians. Methods: We retrospectively reviewed all CES tests ordered by general pediatricians in our institution between 2019 and 2023 and recorded their indications and results. General pediatricians were interviewed to evaluate how CES impacted the domains of clinical utility by assessing changes in management, communication, subsequent testing, and counseling. In addition, feedback was obtained, and barriers faced by general pediatricians to order CES were assessed. Results: The study cohort (n = 30) included children from the inpatient (60%) and outpatient (40%) departments. A positive finding (a pathogenic or likely pathogenic variant that explains the phenotype) was observed in 11 of 30 cases (37%), while 3 (10%) and 16 (53%) received ambiguous (variant of uncertain significance) and negative results, respectively. The indication was deemed appropriate in all 30 cases (100%). Clinical utility was reported in all 11 positive cases (100%). Reproductive counseling is a notable utility in this highly consanguineous population, as all variants identified, in the 11 positive cases, were autosomal recessive. Conclusion: We show that CES ordered by general pediatricians is appropriately indicated and provides a diagnostic yield comparable to that requested by specialists. In addition, we note the high clinical utility of positive results as judged by the ordering pediatricians. The findings of this study can empower general pediatricians to advocate for expanded CES adoption to improve patient access and shorten their diagnostic odyssey.

4.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562733

RESUMO

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

5.
Ophthalmol Retina ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556002

RESUMO

PURPOSE: To describe the rate, characteristics, and outcomes of rhegmatogenous retinal detachment (RD) in patients with Knobloch syndrome. DESIGN: A single-center retrospective cohort study. PARTICIPANTS: Fifty patients with Knobloch syndrome diagnosed clinically, with or without molecular confirmation of recessive pathogenic COL18A1 variants. METHODS: A retrospective chart review of all patients diagnosed with Knobloch syndrome from November 1, 1983 to March 31, 2023. Demographic data, ophthalmic evaluation at baseline and follow-up, interventions, and final anatomic and visual outcomes were collected. MAIN OUTCOME MEASURES: Rate, time of onset, characteristics, and treatment outcomes of RD. RESULTS: Fifty patients with Knobloch syndrome were included. Males constituted 56% of cases. The diagnosis was confirmed with molecular genetic testing in 37 (74%) patients. Twenty-two patients (44%) had documented occipital bony defects or scalp lesions. Forty-eight of 100 eyes (48%) developed RD at a mean (standard deviation [SD]) age of 6.5 (6.1) years. The mean (SD) follow-up was 7.7 (5.6) years (range, 6 months to 24.3 years). Macular hole-related RD comprised 33% of RD cases. The overall single-surgery success rate was 36% and the final anatomic success rate was 70%. Macular hole-related RD carried a slightly worse prognosis with a 58% final anatomic success rate. Vitrectomy with adjunct scleral buckle and silicone oil tamponade provided the highest single-surgery success (62.2%). In eyes with measurable best-corrected visual acuity (BCVA), the mean preoperative BCVA was 1.2 logarithm of the minimum angle of resolution (Snellen equivalent, 20/320). After successful repair, mean visual acuity was 1.3 logarithm of the minimum angle of resolution (Snellen equivalent, 20/500). CONCLUSIONS: Retinal detachment in Knobloch syndrome is frequent and occurs in young children. Macular hole-related RD comprises one third of RD cases and requires careful macular evaluation. Vitrectomy, combined with scleral buckling and silicone oil tamponade, appears to provide the best anatomic outcomes. FINANCIAL DISCLOSURES: The authors have no proprietary or commercial interest in any materials discussed in this article.

6.
medRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352438

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

7.
Clin Genet ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417950

RESUMO

Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia, and Cardiac defects (PDAC) syndrome is a genetically heterogeneous multiple congenital malformation syndrome. Although pathogenic variants in RARB and STRA6 are established causes of PDAC, many PDAC cases remain unsolved at the molecular level. Recently, we proposed biallelic WNT7B variants as a novel etiology based on several families with typical features of PDAC syndrome albeit with variable expressivity. Here, we report three patients from two families that share a novel founder variant in WNT7B (c.739C > T; Arg247Trp). The phenotypic expression of this variant ranges from typical PDAC features to isolated genitourinary anomalies. Similar to previously reported PDAC-associated WNT7B variants, this variant was found to significantly impair WNT7B signaling activity further corroborating its proposed pathogenicity. This report adds further evidence to WNT7B-related PDAC and expands its variable expressivity.

8.
Clin Genet ; 105(5): 488-498, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193334

RESUMO

ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Trifosfato de Adenosina , NADP/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo
9.
Brain ; 147(5): 1822-1836, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38217872

RESUMO

Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.


Assuntos
Deficiência Intelectual , Doenças Musculares , Receptores de Sulfonilureias , Humanos , Deficiência Intelectual/genética , Feminino , Receptores de Sulfonilureias/genética , Masculino , Animais , Criança , Doenças Musculares/genética , Pré-Escolar , Adolescente , Peixe-Zebra , Mutação com Perda de Função/genética , Adulto , Linhagem , Adulto Jovem
10.
Neurogenetics ; 25(2): 79-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240911

RESUMO

Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.


Assuntos
Alelos , Narcolepsia , Linhagem , Humanos , Narcolepsia/genética , Masculino , Feminino , Genes Recessivos , Orexinas/genética , Homozigoto , Consanguinidade , Criança , Cataplexia/genética , Adulto , Fenótipo , Adolescente , Mutação/genética
11.
Hum Genet ; 143(2): 101-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265561

RESUMO

Vitamin D-binding protein (VDBP) deficiency is a recently discovered apparently benign biochemical disorder that can masquerade as treatment-resistant vitamin D deficiency and is likely underrecognized. We present the case of a child with persistently low 25OH vitamin D levels despite replacement therapy. Exome sequencing revealed a novel homozygous nonsense variant in the GC gene, leading to undetectable levels of VDBP. Interestingly, exome sequencing also revealed a homozygous loss-of-function variant in ZNF142, which likely explains the additional clinical features of recurrent febrile convulsions and global developmental delay. Our findings corroborate the two previously reported patients with autosomal recessive VDBP deficiency caused by biallelic GC variants and emphasize the importance of measuring VDBP levels in cases of apparent vitamin D deficiency that is treatment-resistant. We also urge caution in concluding "atypical" presentations without careful investigation of a potential dual molecular diagnosis.


Assuntos
Deficiência de Vitamina D , Proteína de Ligação a Vitamina D , Criança , Humanos , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo , Proteína de Ligação a Vitamina D/uso terapêutico , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/genética
12.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260472

RESUMO

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

13.
Hum Genet ; 143(1): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180561

RESUMO

Perinatal stroke is associated with significant short- and long-term morbidity and has been recognized as the most common cause of cerebral palsy in term infants. The diagnosis of presumed perinatal stroke (PPS) is made in children who present with neurological deficit and/or seizures attributable to focal chronic infarction on neuroimaging and have uneventful neonatal history. The underlying mechanism of presumed perinatal stroke remains unknown and thorough investigation of potential monogenic causes has not been conducted to date. Here, we describe the use of untargeted exome sequencing to investigate a cohort of eight patients from six families with PPS. A likely deleterious variant was identified in four families. These include the well-established risk genes COL4A2 and JAM3. In addition, we report the first independent confirmation of the recently described link between ESAM and perinatal stroke. Our data also highlight NID1 as a candidate gene for the condition. This study suggests that monogenic disorders are important contributors to the pathogenesis of PPS and should be investigated by untargeted sequencing especially when traditional risk factors are excluded.


Assuntos
Acidente Vascular Cerebral , Lactente , Recém-Nascido , Criança , Gravidez , Feminino , Humanos , Arábia Saudita , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/diagnóstico , Neuroimagem/efeitos adversos , Genômica , Fatores de Risco
14.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37943610

RESUMO

Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum-associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Camundongos , Degradação Associada com o Retículo Endoplasmático/genética , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Ophthalmol Retina ; 8(2): 155-162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37678612

RESUMO

PURPOSE: To describe the ocular and renal features, as well as outcomes of retinal detachment repair, in patients with a novel, homozygous laminin ß-2 (LAMB2) pathogenic variant. DESIGN: Single-center retrospective chart review of patients with a homozygous variant, c.619T>C p.(Ser207Pro), in the LAMB2 gene. SUBJECTS: Eleven patients (22 eyes) from 4 families. METHODS: Demographic data and ocular findings were recorded. Patients were recalled for a detailed renal evaluation. MAIN OUTCOME MEASURES: Ocular features, renal features, and outcomes of retinal detachment repair. RESULTS: The mean age at presentation was 6.0 (range, 1-26) years. None of the study eyes had microcoria, and none of the patients had nephrotic-range proteinuria. The mean refraction and axial length were -7.9 diopters (range, -4.0 to -12.0 diopters) and 25.3 (range, 22.7-27.7) mm, respectively. Eleven eyes (50%) had cataract at presentation. Fifteen eyes had a clear view to the fundus and all showed tessellated myopic fundus, avascular peripheral retina evident clinically or on fluorescein angiography, and rudimentary fovea. Optic disc pallor was observed in 10 eyes (66.7%). Straightened retinal vessels, abnormal vascular emanation (situs inversus) from the optic disc, supernumerary vascular branching at the optic disc, and vascular tortuosity were observed in 10 (66.7%), 2 (13.4%), 2 (13.4%), and 2 (13.4%) eyes, respectively. Discrete areas of punched-out chorioretinal atrophy were observed in 4 (26.7%) eyes. Spectral-domain OCT showed retinal and choroidal thinning in 13 eyes (86.7%), retinoschisis temporal to the fovea in 2 eyes (13.4%), and rudimentary fovea in 15 eyes (100%). Among the 22 eyes, 14 eyes (63.6%) developed rhegmatogenous retinal detachment (RRD), mostly during childhood, of which 5 patients had bilateral RRD. Eight eyes were operated on and 6 (75%) achieved retinal reattachment at the last follow-up. The mean preoperative visual acuity was 20/300 and the mean postoperative visual acuity at the last follow-up was 20/400. CONCLUSIONS: This study describes a distinct phenotype of LAMB2-related disease with a novel, homozygous LAMB2 variant, and further expands the spectrum of ophthalmic and renal features, and the molecular genetic basis, of LAMB2-related disease. Because the typical microcoria and nephrotic-range proteinuria might be absent, the retinal features can guide the diagnosis. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Anormalidades do Olho , Miopia , Descolamento Retiniano , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Miopia/complicações , Proteinúria/complicações , Proteinúria/patologia , Retina/patologia , Descolamento Retiniano/etiologia , Descolamento Retiniano/genética , Estudos Retrospectivos
16.
Prenat Diagn ; 44(2): 196-204, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37594370

RESUMO

OBJECTIVE: Fetal megacystis generally presents as suspected lower urinary tract obstruction (LUTO), which is associated with severe perinatal morbidity. Genetic etiologies underlying LUTO or a LUTO-like initial presentation are poorly understood. Our objectives are to describe single gene etiologies in fetuses initially ascertained to have suspected LUTO and to elucidate genotype-phenotype correlations. METHODS: A retrospective case series of suspected fetal LUTO positive for a molecular diagnosis was collected from five centers in the Fetal Sequencing Consortium. Demographics, sonograms, genetic testing including variant classification, and delivery outcomes were abstracted. RESULTS: Seven cases of initially prenatally suspected LUTO-positive for a molecular diagnosis were identified. In no case was the final diagnosis established as urethral obstruction that is, LUTO. All variants were classified as likely pathogenic or pathogenic. Smooth muscle deficiencies involving the bladder wall and interfering with bladder emptying were identified in five cases: MYOCD (2), ACTG2 (2), and MYH11 (1). Other genitourinary and/or non-genitourinary malformations were seen in two cases involving KMT2D (1) and BBS10 (1). CONCLUSION: Our series illustrates the value of molecular diagnostics in the workup of fetuses who present with prenatally suspected LUTO but who may have a non-LUTO explanation for their prenatal ultrasound findings.


Assuntos
Doenças Fetais , Obstrução Uretral , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Doenças Fetais/diagnóstico , Obstrução Uretral/diagnóstico por imagem , Obstrução Uretral/genética , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/anormalidades , Ultrassonografia , Ultrassonografia Pré-Natal
17.
Genet Med ; 26(2): 101029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982373

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados Genéticas
18.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
19.
Hum Genet ; 143(2): 125-136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159139

RESUMO

Pharmacogenomics (PGx) is a promising field of precision medicine where efficacy of drugs is maximized while side effects are minimized for individual patients. Knowledge of the frequency of PGx-relevant variants (pharmacovariants) in the local population is a pre-requisite to informed policy making. Unfortunately, such knowledge is largely lacking from the Middle East. Here, we describe the use of a large clinical exome database (n = 13,473) and HLA haplotypes (n = 64,737) from Saudi Arabia, one of the largest countries in the Middle East, along with previously published data from the local population to ascertain allele frequencies of known pharmacovariants. In addition, we queried another exome database (n = 816) of well-phenotyped research subjects from Saudi Arabia to discover novel candidate variants in known PGx genes (pharmacogenes). Although our results show that only 26% (63/242) of class 1A/1B PharmGKB variants were identified, we estimate that 99.57% of the local population have at least one such variant. This translates to a minimum estimated impact of 9% of medications dispensed by our medical center annually. We also highlight the contribution of rare variants where 71% of the pharmacogenes devoid of common pharmacovariants had at least one potentially deleterious rare variant. Thus, we show that approaches that go beyond the use of commercial PGx kits that have been optimized for other populations should be implemented to ensure universal and equitable access of all members of the local population to personalized prescription practices.


Assuntos
Exoma , Variantes Farmacogenômicos , Humanos , Arábia Saudita , Exoma/genética , Farmacogenética , Medicina de Precisão/métodos
20.
EBioMedicine ; 99: 104940, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154379

RESUMO

BACKGROUND: Pathogenic variants in the centrosome protein (CEP) family have been implicated in primary microcephaly, Seckel syndrome, and classical ciliopathies. However, most CEP genes remain unlinked to specific Mendelian genetic diseases in humans. We sought to explore the roles of CEP295 in human pathology. METHODS: Whole-exome sequencing was performed to screen for pathogenic variants in patients with severe microcephaly. Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying pathomechanisms, including centriole/centrosome development, cell cycle and proliferation changes, and ciliogenesis. Complementary experiments using CEP295 mRNA were performed to determine the pathogenicity of the identified missense variant. FINDINGS: Here, we report bi-allelic variants of CEP295 in four children from two unrelated families, characterized by severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes, suggesting a Seckel-like syndrome. Mechanistically, depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Moreover, loss of CEP295 causes extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts. INTERPRETATION: This study reports CEP295 as a causative gene of the syndromic microcephaly phenotype in humans. Our study also demonstrates that defects in CEP295 result in primary ciliary defects. FUNDING: A full list of funding bodies that contributed to this study can be found under "Acknowledgments."


Assuntos
Deficiência Intelectual , Microcefalia , Criança , Humanos , Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...