Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Int J Pharm ; 657: 124139, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677396

RESUMO

Mesenchymal stem cell (MSC) therapy shows promise in regenerative medicine. For osteoarthritis (OA), MSCs delivered to the joint have a temporal window in which they can secrete growth factors and extracellular matrix molecules, contributing to cartilage regeneration and cell proliferation. However, upon injection in the non-vascularized joint, MSCs lacking energy supply, starve and die too quickly to efficiently deliver enough of these factors. To feed injected MSCs, we developed a hyaluronic acid (HA) derivative, where glucose is covalently bound to hyaluronic acid. To achieve this, the glucose moiety in 4-aminophenyl-ß-D-glucopyranoside was linked to the HA backbone through amidation. The hydrogel was able to deliver glucose in a controlled manner using a trigger system based on hydrolysis catalyzed by endogenous ß-glucosidase. This led to glucose release from the hyaluronic acid backbone inside the cell. Indeed, our hydrogel proved to rescue starvation and cell mortality in a glucose-free medium. Our approach of adding a nutrient to the polymer backbone in hydrogels opens new avenues to deliver stem cells in poorly vascularized, nutrient-deficient environments, such as osteoarthritic joints, and for other regenerative therapies.


Assuntos
Glucose , Ácido Hialurônico , Hidrogéis , Células-Tronco Mesenquimais , Osteoartrite , Ácido Hialurônico/química , Glucose/metabolismo , Osteoartrite/terapia , Hidrogéis/química , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , beta-Glucosidase/metabolismo , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38451440

RESUMO

Nanocrystals and nanosuspensions have become realistic approaches to overcome the formulation challenges of poorly water-soluble drugs. They also represent a less-known but versatile platform for multiple therapeutic applications. They can be integrated into a broad spectrum of drug delivery systems including tablets, hydrogels, microneedles, microparticles, or even functionalized liposomes. The recent progresses, challenges, and opportunities in this field are gathered originally together with an informative case study concerning an itraconazole nanosuspension-in-hydrogel formulation. The translational aspects, historical and current clinical perspectives are also critically reviewed here to shed light on the incoming generation of nanocrystal formulations.

3.
Gels ; 10(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391431

RESUMO

The injectability of cross-linked hyaluronic acid (HA) dermal fillers is influenced by polymer concentration, polymer cross-linking type and degree, the presence of lidocaine or other functional excipients, types of syringes, and injection techniques. Finished product injectability constitutes a critical quality attribute for clinical injectors, as it strongly influences product applicability and ease of use in aesthetic medicine. While injectable product extrusion force specifications are provided by the respective device manufacturers, the qualitative informative value of such datasets is low for injectors wishing to compare product brands and technologies from an injectability standpoint. Therefore, the present study comparatively assessed 28 cross-linked HA dermal fillers (JUVÉDERM®, Restylane®, BELOTERO®, TEOSYAL RHA®, and STYLAGE® brands) using various injectability benchmarking setups for enhanced clinical-oriented relevance. Manual product injections were performed by three specialized and experienced clinicians, whereas automatic product extrusion was performed using a Texture Analyzer instrument. The various hydrogel products were injected into ex vivo human skin and into SimSkin® cutaneous equivalents to appropriately account for injection-related counterpressure. The injectability results revealed important variability between and within product brands, with a strong influence of the local anesthetic lidocaine, HA contents, and needle gauge size. Critical appraisals of the investigated products were performed, notably from manufacturing process-based and clinical ease of application-based standpoints, centered on respective experimental injectability quality levels. Generally, it was confirmed that each HA-based dermal filler product requires specific expertise for optimal injection, mainly due to differing viscoelastic characteristics and injectability attributes. Overall, the present study set forth evidence-based and clinical-oriented rationale elements confirming the importance for injectors to work with injectable products with which they are experienced and comfortable to optimize clinical results.

4.
Int J Pharm ; 651: 123754, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163526

RESUMO

Osteoarthritis is the most common chronic joint disease and a major health care concern due to the lack of efficient treatments. This is mainly related to the local and degenerative nature of this disease. Kartogenin was recently reported as a disease-modifying osteoarthritis drug that promotes cartilage repair, but its therapeutic effect is impeded by its very low solubility. Therefore, we designed a unique nanocrystal-chitosan particle intra-articular delivery system for osteoarthritis treatment that merges the following formulation techniques: nanosize reduction of a drug by wet milling and spray drying. The intermediate formulation (kartogenin nanocrystals) increased the solubility and dissolution rates of kartogenin. The final drug delivery system consisted of an easily resuspendable and ready-to-use microsphere powder for intra-articular injection. Positively charged chitosan microspheres with a median size of approximately 10 µm acted as a mothership drug delivery system for kartogenin nanocrystals in a simulated intra-articular injection. The microspheres showed suitable stability and a controlled release profile in synovial fluid and were nontoxic in human synoviocytes. The cartilage retention skills of the microspheres were also explored ex vivo using cartilage. This drug delivery system shows promise for advancement to preclinical stages in osteoarthritis therapy and scale-up production.


Assuntos
Anilidas , Quitosana , Nanopartículas , Osteoartrite , Ácidos Ftálicos , Humanos , Quitosana/química , Preparações Farmacêuticas , Osteoartrite/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Injeções Intra-Articulares , Microesferas
5.
Eur Radiol Exp ; 8(1): 3, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191711

RESUMO

Intracranial aneurysms (IAs) are usually incidentally discovered by magnetic resonance imaging (MRI). Once discovered, the risk associated with their treatment must be balanced with the risk of an unexpected rupture. Although clinical observations suggest that the detection of contrast agent in the aneurysm wall using a double-inversion recovery black-blood (BB) sequence may point to IA wall instability, the exact meaning of this observation is not understood. Validation of reliable diagnostic markers of IA (in)stability is of utmost importance to deciding whether to treat or not an IA. To longitudinally investigate IA progression and enhance our understanding of this devastating disease, animal models are of great help. The aim of our study was to improve a three-dimensional (3D)-time-of-flight (TOF) sequence and to develop a BB sequence on a standard preclinical 3-T MRI unit to investigate intracranial arterial diseases in rats. We showed that our 3D-TOF sequence allows reliable measurements of intracranial artery diameters, inter-artery distances, and angles between arteries and that our BB sequence enables us to visualize intracranial arteries. We report the first BB-MRI sequence to visualize intracranial arteries in rats using a preclinical 3-T MRI unit. This sequence could be useful for a large community of researchers working on intracranial arterial diseases.Relevance statement We developed a black-blood MRI sequence to study vessel wall enhancement in rats with possible application to understanding IAs instability and finding reliable markers for clinical decision-making.Key points• Reliable markers of aneurysm stability are needed for clinical decision.• Detection of contrast enhancement in the aneurysm wall may be associated with instability.• We developed a black-blood MRI sequence in rats to be used to study vessel wall enhancement of IAs.


Assuntos
Aneurisma , Doenças Arteriais Intracranianas , Animais , Ratos , Artérias , Angiografia por Ressonância Magnética , Modelos Animais
6.
Drug Deliv ; 30(1): 2284683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994039

RESUMO

Nano- and micro-technologies can salvage drugs with very low solubility that were doomed to pre-clinical and clinical failure. A unique design approach to develop drug nanocrystals (NCs) loaded in extended release polymeric microparticles (MPs) for local treatments is presented here through the case of a potential osteoarthritis (OA) drug candidate for intra-articular (IA) administration. Optimizing a low-shear wet milling process allowed the production of NCs that can be subsequently freeze-dried (FD) and redispersed in a hydrophobic polymer-organic solvent solution to form spray-dried MPs. Results demonstrated a successful development of a ready-to-upscale formulation containing PLGA MPs with high drug NC encapsulation rates that showed a continuous and controlled drug release profile over four months. The screenings and procedures described allowed for identifying and overcoming common difficulties and challenges raised along the drug reduction to nano-size and spray-drying process. Above all, the technical knowledge acquired is intended for formulation scientists aiming to improve the therapeutic perspectives of poorly soluble drugs.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Solventes/química , Nanopartículas/química , Tamanho da Partícula
7.
Gels ; 9(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37888381

RESUMO

While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.

8.
Pharmaceutics ; 15(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37376156

RESUMO

Most marketed HA-based dermal fillers use chemical cross-linking to improve mechanical properties and extend their lifetime in vivo; however, stiffer products with higher elasticity require an increased extrusion force for injection in clinical practice. To balance longevity and injectability, we propose a thermosensitive dermal filler, injectable as a low viscosity fluid that undergoes gelation in situ upon injection. To this end, HA was conjugated via a linker to poly(N-isopropylacrylamide) (pNIPAM), a thermosensitive polymer using "green chemistry", with water as the solvent. HA-L-pNIPAM hydrogels showed a comparatively low viscosity (G' was 105.1 and 233 for Candidate1 and Belotero Volume®, respectively) at room temperature and spontaneously formed a stiffer gel with submicron structure at body temperature. Hydrogel formulations exhibited superior resistance against enzymatic and oxidative degradation and could be administered using a comparatively lower injection force (49 N and >100 N for Candidate 1 and Belotero Volume®, respectively) with a 32G needle. Formulations were biocompatible (viability of L929 mouse fibroblasts was >100% and ~85% for HA-L-pNIPAM hydrogel aqueous extract and their degradation product, respectively), and offered an extended residence time (up to 72 h) at the injection site. This property could potentially be exploited to develop sustained release drug delivery systems for the management of dermatologic and systemic disorders.

9.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242774

RESUMO

Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.

10.
Int J Pharm ; 639: 122961, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075927

RESUMO

Clostridioides difficile infection (CDI) is a critical nosocomial infection with more than 124,000 cases per year in Europe and a mortality rate of 15-17 %. The standard of care (SoC) is antibiotic treatment. Unfortunately, the relapse rate is high (∼35 %) and SoC is significantly less effective against recurrent infection (rCDI). Fecal microbiota transplantation (FMT) is a recommended treatment against rCDI from the second recurrence episode and has an efficacy of 90 %. The formulation of diluted donor stool deserves innovation because its actual administration routes deserve optimization (naso-duodenal/jejunal tubes, colonoscopy, enema or several voluminous oral capsules). Encapsulation of model bacteria strains in gel beads were first investigated. Then, the encapsulation method was applied to diluted stools. Robust spherical gel beads were obtained. The mean particle size was around 2 mm. A high loading of viable microorganisms was obtained for model strains and fecal samples. For plate-counting, values ranged from 1015 to 1017 CFU/g for single and mixed model strains, and 106 to 108 CFU/g for fecal samples. This corresponded to a viability of 30 % to 60 % as assessed by flow cytometry. This novel formulation is promising as the technology is applicable to both model strains and bacteria contained in the gut microbiota.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Transplante de Microbiota Fecal , Resultado do Tratamento , Fezes/microbiologia , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia
11.
Neurosurg Rev ; 46(1): 56, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786880

RESUMO

Intracranial aneurysm (IA) animal models are paramount to study IA pathophysiology and to test new endovascular treatments. A number of in vivo imaging modalities are available to characterize IAs at different stages of development in these animal models. This review describes existing in vivo imaging techniques used so far to visualize IAs in animal models. We systematically searched for studies containing in vivo imaging of induced IAs in animal models in PubMed and SPIE Digital library databases between 1 January 1945 and 13 July 2022. A total of 170 studies were retrieved and reviewed in detail, and information on the IA animal model, the objective of the study, and the imaging modality used was collected. A variety of methods to surgically construct or endogenously induce IAs in animals were identified, and 88% of the reviewed studies used surgical methods. The large majority of IA imaging in animals was performed for 4 reasons: basic research for IA models, testing of new IA treatment modalities, research on IA in vivo imaging of IAs, and research on IA pathophysiology. Six different imaging techniques were identified: conventional catheter angiography, computed tomography angiography, magnetic resonance angiography, hemodynamic imaging, optical coherence tomography, and fluorescence imaging. This review presents and discusses the advantages and disadvantages of all in vivo IA imaging techniques used in animal models to help future IA studies finding the most appropriate IA imaging modality and animal model to answer their research question.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Tomografia de Coerência Óptica , Angiografia por Tomografia Computadorizada/métodos , Angiografia por Ressonância Magnética
12.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671025

RESUMO

Cultured primary progenitor tenocytes in lyophilized form were previously shown to possess intrinsic antioxidant properties and hyaluronan-based hydrogel viscosity-modulating effects in vitro. The aim of this study was to prepare and functionally characterize several stabilized (lyophilized) cell-free progenitor tenocyte extracts for inclusion in cytotherapy-inspired complex injectable preparations. Fractionation and sterilization methods were included in specific biotechnological manufacturing workflows of such extracts. Comparative and functional-oriented characterizations of the various extracts were performed using several orthogonal descriptive, colorimetric, rheological, mechanical, and proteomic readouts. Specifically, an optimal sugar-based (saccharose/dextran) excipient formula was retained to produce sterilizable cytotherapeutic derivatives with appropriate functions. It was shown that extracts containing soluble cell-derived fractions possessed conserved and significant antioxidant properties (TEAC) compared to the freshly harvested cellular starting materials. Progenitor tenocyte extracts submitted to sub-micron filtration (0.22 µm) and 60Co gamma irradiation terminal sterilization (5−50 kGy) were shown to retain significant antioxidant properties and hyaluronan-based hydrogel viscosity modulating effects. Hydrogel combination products displayed important efficacy-related characteristics (friction modulation, tendon bioadhesivity) with significant (p < 0.05) protective effects of the cellular extracts in oxidative environments. Overall, the present study sets forth robust control methodologies (antioxidant assays, H2O2-challenged rheological setups) for stabilized cell-free progenitor tenocyte extracts. Importantly, it was shown that highly sensitive phases of cytotherapeutic derivative manufacturing process development (purification, terminal sterilization) allowed for the conservation of critical biological extract attributes.

13.
Can J Infect Dis Med Microbiol ; 2023: 7274309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698730

RESUMO

Background: Salmonella species are frequently linked to biofilm-associated infections. Biofilm formation intensively reduces the efficacy of antibiotics and the host immune system. Therefore, new therapeutic strategies are needed. Thymol, the main monoterpene phenol found in Thymus vulgaris, has been shown to possess potent antibiofilm activity. Our previous findings showed that thymol enhanced the antibiofilm activity of aminoglycosides against Salmonella enterica serovars. However, the clinical potential of thymol has not yet been realized due to its low aqueous solubility and high volatility. Nano-based drug delivery systems have emerged as a novel strategy to resolve these problems. This study aimed to investigate the antibiofilm activity of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles (TH-NPs) and their synergism when used in combination with amikacin antibiotics. Methods: The antibacterial activity of TH-NPs was evaluated using the broth microdilution method. Biofilm formation and antibiofilm assays were performed by the miniaturized microtiter plate method. Interaction studies between TH-NPs and amikacin against biofilm were determined using the checkerboard method. Results: TH-NPs exhibited antibacterial activity against planktonic cells of S. enterica serovars that were more efficient (8 to 32 times) than free thymol alone. S. Typhimurium and S. Choleraesuis isolates were considered strong biofilm producers. The combination of TH-NPs with amikacin showed synergistic activity in the inhibition and eradication of S. enterica serovar biofilm. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of amikacin were reduced by 32 to 128-fold when used in combination with TH-NPs. Time-kill kinetic studies showed that the combination of TH-NPs with amikacin possesses bactericidal action. Conclusion: This study suggests that the combination of TH-NPs with amikacin can be an alternative to overcome biofilm-associatedSalmonella diseases and therefore should be further explored as a model to search for new antibiofilm drugs.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35911151

RESUMO

Background: Thymol is an important component of essential oils found in the oil of thyme, is extracted mainly from Thymus vulgaris, and was shown to act synergistically with streptomycin against Klebsiella pneumoniae biofilms. Additionally, thymol could be encapsulated into poly (lactic-co-glycolic acid) (PLGA) nanoparticles to overcome issues related to its low water solubility and high volatility. The present study aimed to investigate the antibiofilm activity of thymol-loaded PLGA nanoparticles (Thy-NPs) alone and in combination with streptomycin against biofilms of K. pneumoniae isolates. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibiofilm activities were determined by the safranin dye assay. The synergistic effect of Thy-NPs with streptomycin was assessed by the checkerboard method. The kinetic study of the biofilm biomass and time-kill assay were further performed. Results: Thy-NPs exhibited the highest antibacterial activity against K. pneumoniae isolates, with MIC values ranging from 1 to 8 µg/mL. Additionally, Thy-NPs showed the highest antibiofilm activity against K. pneumoniae isolates with minimal biofilm inhibitory concentration (MBIC) and minimal biofilm eradication concentration (MBEC) values ranging from 16 to 64 µg/mL and from 32 to 128 µg/Ml, respectively. The combination treatment combining Thy-NPs with streptomycin showed a synergistic effect against the inhibition of biofilm formation and eradication of biofilms of K. pneumoniae isolates with fractional inhibitory concentration index values ranging from 0.13 to 0.28. In addition, the MBIC and MBEC values of streptomycin against K. pneumoniae isolates were dramatically reduced (up to 128-fold) in combination with Thy-NPs, suggesting that Thy-NPs would enhance the antibiofilm activity of streptomycin. The biomass and time-kill kinetics analysis confirmed the observed synergistic interactions and showed the bactericidal activity of streptomycin in combination with Thy-NPs. Conclusions: Our results indicate that the synergistic bactericidal effect between streptomycin and Thy-NPs could be a promising approach in the control of biofilm-associated infections caused by K. pneumoniae.

15.
Expert Opin Biol Ther ; 22(7): 929-944, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35763604

RESUMO

INTRODUCTION: The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED: After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION: FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Infecções por Clostridium/terapia , Disbiose , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Humanos , Recidiva , Resultado do Tratamento
16.
Pharmaceutics ; 14(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336034

RESUMO

Hyaluronic acid (HA) constitutes a versatile chemical framework for the development of osteoarthritis pain treatment by means of injection in the joints, so-called viscosupplementation. Without appropriate physico-chemical tuning, such preparations are inherently hindered by prompt in vivo degradation, mediated by hyaluronidases and oxidative stress. To prolong hydrogel residence time and confer optimized product functionality, novel thermoresponsive nanoforming HA derivatives were proposed and characterized. Combined use of sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) in green chemistry process enabled the synthesis of HA-based polymers, with in situ obtention of appropriate viscoelastic properties. Spontaneous and reversible thermoformation of nanoparticles above 30 °C was experimentally confirmed. Lead formulations were compared to a commercially available HA-based product and shown significantly better in vitro resistance to enzymatic and oxidative degradation, required half the injection force with optimal viscoelastic hydrogel properties in equine synovial fluids. Results highlighted the vast potential of appropriately engineered HA-based systems as next-generation long-acting viscosupplementation products for osteoarthritic patients.

17.
Eur J Pharm Biopharm ; 172: 41-52, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114357

RESUMO

Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/tratamento farmacológico
18.
Cardiovasc Res ; 118(6): 1583-1596, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33974072

RESUMO

AIMS: Wall shear stress (WSS) determines intracranial aneurysm (IA) development. Polycystic kidney disease (PKD) patients have a high IA incidence and risk of rupture. Dysfunction/absence of primary cilia in PKD endothelial cells (ECs) may impair mechano-transduction of WSS and favour vascular disorders. The molecular links between primary cilia dysfunction and IAs are unknown. METHODS AND RESULTS: Wild-type and primary cilia-deficient Tg737orpk/orpk arterial ECs were submitted to physiological (30 dynes/cm2) or aneurysmal (2 dynes/cm2) WSS, and unbiased transcriptomics were performed. Tg737orpk/orpk ECs displayed a fivefold increase in the number of WSS-responsive genes compared to wild-type cells. Moreover, we observed a lower trans-endothelial resistance and a higher endothelial permeability, which correlated with disorganized intercellular junctions in Tg737orpk/orpk cells. We identified ZO-1 as a central regulator of primary cilia-dependent endothelial junction integrity. Finally, clinical and histological characteristics of IAs from non-PKD and PKD patients were analysed. IAs in PKD patients were more frequently located in the middle cerebral artery (MCA) territory than in non-PKD patients. IA domes from the MCA of PKD patients appeared thinner with less collagen and reduced endothelial ZO-1 compared with IA domes from non-PKD patients. CONCLUSION: Primary cilia dampen the endothelial response to aneurysmal low WSS. In absence of primary cilia, ZO-1 expression levels are reduced, which disorganizes intercellular junctions resulting in increased endothelial permeability. This altered endothelial function may not only contribute to the severity of IA disease observed in PKD patients, but may also serve as a potential diagnostic tool to determine the vulnerability of IAs.


Assuntos
Cílios , Células Endoteliais , Cílios/metabolismo , Cílios/patologia , Células Endoteliais/metabolismo , Humanos , Permeabilidade , Estresse Mecânico , Proteínas Supressoras de Tumor/metabolismo
19.
Nat Prod Res ; 36(11): 2783-2790, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993799

RESUMO

The phytochemical study of the CH2Cl2- MeOH (1:1, v/v) extract of the stem bark of Carapa procera DC (Meliaceae) led to the isolation and characterisation of a new natural limonoid 7ß-obacunol (6), along with seven known compounds. Their structures were elucidated by spectroscopic means, including 1 D and 2 D NMR, HRESI-MS and by comparison with published data. The cytotoxicity of compounds 1-6 was assessed in vitro by the WST-1 assay on human lung adenocarcinoma A549 and Raw 264.7 mouse macrophage cell lines. Results suggested that obacunone (3) exhibited the most potent cytotoxic effect against A549 and Raw 264.7 cells with respective IC50 values of 25.24 µM and 29.14 µM, while the new natural limonoid 7ß-obacunol (6) exhibited 32.75 µM and 39.19 µM, respectively on both cell lines. Therefore, limonoid derivatives might be promising sources of natural bioactive metabolites against cancer.


Assuntos
Antineoplásicos , Limoninas , Meliaceae , Animais , Antineoplásicos/análise , Benzoxepinas , Porcelana Dentária , Limoninas/química , Limoninas/farmacologia , Meliaceae/química , Ligas Metalo-Cerâmicas , Camundongos , Estrutura Molecular , Casca de Planta/química , Titânio
20.
Front Cardiovasc Med ; 8: 775307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957259

RESUMO

Background: The circle of Willis is a network of arteries allowing blood supply to the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA). Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of disability in the western world. The formation and rupture of IAs is a complex pathological process not completely understood. In the present study, we have precisely measured aneurysmal wall thickness and its uniformity on histological sections and investigated for associations between IA wall thickness/uniformity and commonly admitted risk factors for IA rupture. Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals during microsurgery after clipping of the IA neck. Samples were embedded in paraffin, sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The mean, minimum, and maximum wall thickness as well as thickness uniformity was measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured, vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity, previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis of polycystic kidney disease (PKD)] were collected. Results: We found positive correlations between maximum dome diameter or neck size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls. No associations were found between smoking, hypertension, sex, IA multiplicity, rupture status or vascular location, and IA wall thickness. No correlation was found between patient age and IA wall thickness. The group of IAs with non-uniform wall thickness contained more ruptured IAs, women and patients harboring multiple IAs. Finally, PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity. Conclusion: Among our patient and aneurysm characteristics of interest, maximum dome diameter, neck size and PKD were the three factors having the most significant impact on IA wall thickness and thickness uniformity. Moreover, wall thickness heterogeneity was more observed in ruptured IAs, in women and in patients with multiple IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would certainly improve personalized management of the disease and patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...