Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514298

RESUMO

We investigated the effect of pre-sowing seed treatment with endophytic Bacillus subtilis 10-4 (B. subtilis) on spring and winter wheat (Triticum aestivum L.; cultivars Ekada-70 (Ek) and Scepter (Sc), respectively) growth and tolerance under 1-24 h of drought stress, modulated by 12% polyethylene glycol 6000 (PEG). The results showed that drought decreased transpiration intensity (TI), root relative water content (RWC), osmotic potential (Ψπ) of cell sap, and induced proline accumulation and electrolyte leakage (EL) in both wheat cultivars. It was revealed that Sc was more responsive to PEG and B. subtilis treatments than Ek. Under drought, Ek did not significantly change root length, shoot height, or dry biomass. The pretreatment of wheat plants with B. subtilis performed significantly better under drought conditions through the enhanced TI, RWC, and Ψπ of the cell sap in comparison with the plants treated with 12% PEG alone. B. subtilis also reduced stress-caused EL, especially in the Sc cultivar. Under water deficit wheat seedlings, pretreated with B. subtilis, have a higher proline accumulation in comparison to untreated stressed plants. Taken together, our results demonstrate the crucial role of endophytic B. subtilis in ameliorating the adverse effects of water stress on the water balance of both winter and spring wheat cultivars.

2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511393

RESUMO

Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.


Assuntos
Óxido Nítrico , Plantas , Óxido Nítrico/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/fisiologia , Desenvolvimento Vegetal/genética , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA