Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399645

RESUMO

Mucochytrium quahogii, also known as QPX or Quahog Parasite Unknown, is the causative agent of QPX disease in the hard clam (Mercenaria mercenaria). Host-pathogen-environment interactions between M. quahogii, the hard clam, and temperature were explored in a microcosm experiment. Hard clams were housed in individual tanks with sterile seawater under two temperature regimes: low (13 °C) temperature, which is thought to be optimal for QPX disease development, and high (20 °C) temperature, which has been shown to promote "healing" of QPX-infected clams. Hard clam tissue, pallial fluid, seawater, and shell biofilms were collected and assayed for M. quahogii. The release of M. quahogii from naturally infected live hard clams into seawater was detected only in the low temperature treatment, suggesting that temperature influences the release of potentially infectious cells. M. quahogii was commonly found in hard clam pallial fluid, even after 9 weeks in the lab, suggesting pallial fluid is a stable reservoir of M. quahogii within its primary host and that M. quahogii is not a transient component of the hard clam microbiota. Overall, results support a host-specific relationship and that M. quahogii is a commensal member of the hard clam microbiota, supporting its classification as an opportunistic pathogen.

2.
Fish Shellfish Immunol ; 146: 109366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218419

RESUMO

Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomics, proteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunity. Hemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.


Assuntos
Crassostrea , Água do Mar , Animais , Água do Mar/química , Crassostrea/metabolismo , Concentração de Íons de Hidrogênio , Proteômica , Terapia de Imunossupressão , Perfilação da Expressão Gênica , Dióxido de Carbono/farmacologia
3.
Mar Biotechnol (NY) ; 25(6): 997-1019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864760

RESUMO

Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Água do Mar , Concentração de Íons de Hidrogênio , Biomineralização , Dióxido de Carbono/metabolismo
4.
Fish Shellfish Immunol ; 140: 108992, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567455

RESUMO

Decondensation and the subsequent release of chromatin from specific immune cells in response to inflammatory stimuli is a highly conserved aspect of the innate immune system and leads to the formation of extracellular traps, observable in nearly all forms of multicellular life. This process is known as ETosis, with the release of DNA and its associated antimicrobial proteins physically capturing and neutralizing pathogens following an infection or tissue damage. Despite the universality of this response, data concerning extracellular traps in non-model organisms is limited, with most invertebrate studies doing little more than proving their existence due to difficulties in stimulation and high interindividual variability in trap production. This study provides a novel, simple, and inexpensive method for the consistent stimulation of extracellular traps in eastern oyster (Crassostrea virginica) hemocytes. Using the methods described in this study, we compared how ploidy impacts the rate, size, and efficacy of extracellular traps. Findings demonstrated that hemocyte extracellular traps were potent antimicrobials against both Gram-positive and Gram-negative bacteria. Furthermore, we provide evidence to suggest that agranulocytes may be the primary ETosis effector cells in C. virginica. This study is the first to describe extracellular traps in C. virginica and highlights the possible benefits of using triploid animals to gain a further understanding of ETosis and the factors that regulate its induction and efficacy.


Assuntos
Crassostrea , Armadilhas Extracelulares , Animais , Armadilhas Extracelulares/genética , Triploidia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hemócitos
5.
Sci Total Environ ; 902: 165900, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572507

RESUMO

Low pH conditions, associated with ocean acidification, represent threats to many commercially and ecologically important organisms, including bivalves. However, there are knowledge gaps regarding factors explaining observed differences in biological responses to low pH in laboratory experiments. Specific sources of local adaptation such as upwelling exposure and the role of experimental design, such as carbonate chemistry parameter changes, should be considered. Linking upwelling exposure, as an individual oceanographic phenomenon, to responses measured in laboratory experiments may further our understanding of local adaptation to global change. Here, meta-analysis is used to test the hypotheses that upwelling exposure and experimental design affect outcomes of individual, laboratory-based studies that assess bivalve metabolic (clearance and respiration rate) responses to low pH. Results show that while bivalves generally decrease metabolic activity in response to low pH, upwelling exposure and experimental design can significantly impact outcomes. Bivalves from downwelling or weak upwelling areas decrease metabolic activity in response to low pH, but bivalves from strong upwelling areas increase or do not change metabolic activity in response to low pH. Furthermore, experimental temperature, exposure time and magnitude of the change in carbonate chemistry parameters all significantly affect outcomes. These results suggest that bivalves from strong upwelling areas may be less sensitive to low pH. This furthers our understanding of local adaptation to global change by demonstrating that upwelling alone can explain up to 49 % of the variability associated with bivalve metabolic responses to low pH. Furthermore, when interpreting outcomes of individual, laboratory experiments, scientists should be aware that higher temperatures, shorter exposure times and larger changes in carbonate chemistry parameters may increase the chance of suppressed metabolic activity.


Assuntos
Bivalves , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Projetos de Pesquisa , Bivalves/metabolismo , Carbonatos/metabolismo
6.
Mar Pollut Bull ; 192: 115048, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236091

RESUMO

The negative impacts of ocean warming and acidification on bivalve fisheries are well documented but few studies investigate parameters relevant to energy budgets and larval dispersal. This study used laboratory experiments to assess developmental, physiological and behavioral responses to projected climate change scenarios using larval Atlantic surfclams Spisula solidissima solidissima, found in northwest Atlantic Ocean continental shelf waters. Ocean warming increased feeding, scope for growth, and biomineralization, but decreased swimming speed and pelagic larval duration. Ocean acidification increased respiration but reduced immune performance and biomineralization. Growth increased under ocean warming only, but decreased under combined ocean warming and acidification. These results suggest that ocean warming increases metabolic activity and affects larval behavior, while ocean acidification negatively impacts development and physiology. Additionally, principal component analysis demonstrated that growth and biomineralization showed similar response profiles, but inverse response profiles to respiration and swimming speed, suggesting alterations in energy allocation under climate change.


Assuntos
Bivalves , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva , Acidificação dos Oceanos , Mudança Climática , Temperatura , Oceanos e Mares , Aquecimento Global
7.
Animals (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048417

RESUMO

Oceanic absorption of atmospheric CO2 results in alterations of carbonate chemistry, a process coined ocean acidification (OA). The economically and ecologically important eastern oyster (Crassostrea virginica) is vulnerable to these changes because low pH hampers CaCO3 precipitation needed for shell formation. Organisms have a range of physiological mechanisms to cope with altered carbonate chemistry; however, these processes can be energetically expensive and necessitate energy reallocation. Here, the hypothesis that resilience to low pH is related to energy resources was tested. In laboratory experiments, oysters were reared or maintained at ambient (400 ppm) and elevated (1300 ppm) pCO2 levels during larval and adult stages, respectively, before the effect of acidification on metabolism was evaluated. Results showed that oysters exposed to elevated pCO2 had significantly greater respiration. Subsequent experiments evaluated if food abundance influences oyster response to elevated pCO2. Under high food and elevated pCO2 conditions, oysters had less mortality and grew larger, suggesting that food can offset adverse impacts of elevated pCO2, while low food exacerbates the negative effects. Results also demonstrated that OA induced an increase in oyster ability to select their food particles, likely representing an adaptive strategy to enhance energy gains. While oysters appeared to have mechanisms conferring resilience to elevated pCO2, these came at the cost of depleting energy stores, which can limit the available energy for other physiological processes. Taken together, these results show that resilience to OA is at least partially dependent on energy availability, and oysters can enhance their tolerance to adverse conditions under optimal feeding regimes.

8.
Sci Rep ; 13(1): 6655, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095123

RESUMO

The bay scallop, Argopecten irradians, represents a commercially, culturally and ecologically important species found along the United States' Atlantic and Gulf coasts. Since 2019, scallop populations in New York have been suffering large-scale summer mortalities resulting in 90-99% reduction in biomass of adult scallops. Preliminary investigations of these mortality events showed 100% prevalence of an apicomplexan parasite infecting kidney tissues. This study was designed to provide histological, ultrastructural and molecular characteristics of a non-described parasite, member of the newly established Marosporida clade (Apicomplexa) and provisionally named BSM (Bay Scallop Marosporida). Molecular diagnostics tools (quantitative PCR, in situ hybridization) were developed and used to monitor disease development. Results showed that BSM disrupts multiple scallop tissues including kidney, adductor muscle, gill, and gonad. Microscopy observations allowed the identification of both intracellular and extracellular stages of the parasite. Field surveys demonstrated a strong seasonal signature in disease prevalence and intensity, as severe cases and mortality increase as summer progresses. These results strongly suggest that BSM infection plays a major role in the collapse of bay scallop populations in New York. In this framework, BSM may synergistically interact with stressful environmental conditions to impair the host and lead to mortality.


Assuntos
Parasitos , Pectinidae , Animais , New York , Pectinidae/genética , Reação em Cadeia da Polimerase , Alimentos Marinhos
9.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835072

RESUMO

Calcifying marine organisms, including the eastern oyster (Crassostrea virginica), are vulnerable to ocean acidification (OA) because it is more difficult to precipitate calcium carbonate (CaCO3). Previous investigations of the molecular mechanisms associated with resilience to OA in C. virginica demonstrated significant differences in single nucleotide polymorphism and gene expression profiles among oysters reared under ambient and OA conditions. Converged evidence generated by both of these approaches highlighted the role of genes related to biomineralization, including perlucins. Here, gene silencing via RNA interference (RNAi) was used to evaluate the protective role of a perlucin gene under OA stress. Larvae were exposed to short dicer-substrate small interfering RNA (DsiRNA-perlucin) to silence the target gene or to one of two control treatments (control DsiRNA or seawater) before cultivation under OA (pH ~7.3) or ambient (pH ~8.2) conditions. Two transfection experiments were performed in parallel, one during fertilization and one during early larval development (6 h post-fertilization), before larval viability, size, development, and shell mineralization were monitored. Silenced oysters under acidification stress were the smallest, had shell abnormalities, and had significantly reduced shell mineralization, thereby suggesting that perlucin significantly helps larvae mitigate the effects of OA.


Assuntos
Crassostrea , Água do Mar , Animais , Água do Mar/química , Interferência de RNA , Biomineralização , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Crassostrea/metabolismo , Larva/metabolismo , Dióxido de Carbono/metabolismo
10.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622459

RESUMO

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Variações do Número de Cópias de DNA , Genoma , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único
11.
Glob Chang Biol ; 29(8): 2092-2107, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625070

RESUMO

Warming temperatures and diminishing dissolved oxygen (DO) concentrations are among the most pervasive drivers of global coastal change. While regions of the Northwest Atlantic Ocean are experiencing greater than average warming, the combined effects of thermal and hypoxic stress on marine life in this region are poorly understood. Populations of the northern bay scallop, Argopecten irradians irradians across the northeast United States have experienced severe declines in recent decades. This study used a combination of high-resolution (~1 km) satellite-based temperature records, long-term temperature and DO records, field and laboratory experiments, and high-frequency measures of scallop cardiac activity in an ecosystem setting to quantify decadal summer warming and assess the vulnerability of northern bay scallops to thermal and hypoxic stress across their geographic distribution. From 2003 to 2020, significant summer warming (up to ~0.2°C year-1 ) occurred across most of the bay scallop range. At a New York field site in 2020, all individuals perished during an 8-day estuarine heatwave that coincided with severe diel-cycling hypoxia. Yet at a Massachusetts site with comparable DO levels but lower daily mean temperatures, mortality was not observed. A 96-h laboratory experiment recreating observed daily temperatures of 25 or 29°C, and normoxia or hypoxia (22.2% air saturation), revealed a 120-fold increased likelihood of mortality in the 29°C-hypoxic treatment compared with control conditions, with scallop clearance rates also reduced by 97%. Cardiac activity measurements during a field deployment indicated that low DO and elevated daily temperatures modulate oxygen consumption rates and likely impact aerobic scope. Collectively, these findings suggest that concomitant thermal and hypoxic stress can have detrimental effects on scallop physiology and survival and potentially disrupt entire fisheries. Recovery of hypoxic systems may benefit vulnerable fisheries under continued warming.


Assuntos
Pesqueiros , Pectinidae , Humanos , Animais , Ecossistema , Hipóxia , New York
12.
Mar Biotechnol (NY) ; 25(1): 83-99, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417051

RESUMO

The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.


Assuntos
Mercenaria , Animais , Mercenaria/genética , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Ecossistema , Dióxido de Carbono/farmacologia
13.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555707

RESUMO

Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.


Assuntos
Mercenaria , Transcriptoma , Animais , Água do Mar/química , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Biomineralização , Proteômica , Dióxido de Carbono/metabolismo , Mercenaria/metabolismo
14.
Evol Appl ; 15(11): 1730-1748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426129

RESUMO

The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.

15.
J Fungi (Basel) ; 8(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354895

RESUMO

Mucochytrium quahogii, commonly known as QPX (Quahog Parasite Unknown), is the causative agent of QPX disease in hard clams (Mercenaria mercenaria), but poor understanding of the relationship between host and pathogen has hindered effective management. To address this gap in knowledge, we conducted a two-year study quantifying the distribution and abundance of M. quahogii in hard clam tissue, pallial fluid, and the environment. M. quahogii was broadly distributed in clams and the environment, in areas with and without a known history of QPX disease. M. quahogii in clams was not strongly related to M. quahogii in the environment. M. quahogii was always present in either the tissue or pallial fluid of each clam, with an inverse relationship between the abundance in the two anatomical locations. This study suggests that the sediment-water interface and clam pallial fluid are environmental reservoirs of M. quahogii and that there is a host-specific relationship between M. quahogii and the hard clam, supporting its classification as a commensal, opportunistic pathogen. There appears to be minimal risk of spreading QPX disease to naïve clam populations because M. quahogii is already present and does not appear to be causing disease in hard clam populations in locations unfavorable for pathogenesis.

16.
Genes (Basel) ; 13(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140697

RESUMO

Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.


Assuntos
Crassostrea , Adaptação Fisiológica , Animais , Dióxido de Carbono , Crassostrea/genética , Concentração de Íons de Hidrogênio , Larva/genética , Água do Mar , Transcriptoma/genética
17.
Front Immunol ; 13: 838530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273613

RESUMO

Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the "biomineralization toolkit" and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.


Assuntos
Anidrases Carbônicas , Mercenaria , Animais , Biomineralização , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Hemócitos , Mercenaria/genética , Mercenaria/metabolismo , Proteoma/metabolismo , Proteômica , Transcriptoma
18.
BMC Genomics ; 23(1): 192, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260071

RESUMO

BACKGROUND: The hard clam Mercenaria mercenaria is a major marine resource along the Atlantic coasts of North America and has been introduced to other continents for resource restoration or aquaculture activities. Significant mortality events have been reported in the species throughout its native range as a result of diseases (microbial infections, leukemia) and acute environmental stress. In this context, the characterization of the hard clam genome can provide highly needed resources to enable basic (e.g., oncogenesis and cancer transmission, adaptation biology) and applied (clam stock enhancement, genomic selection) sciences. RESULTS: Using a combination of long and short-read sequencing technologies, a 1.86 Gb chromosome-level assembly of the clam genome was generated. The assembly was scaffolded into 19 chromosomes, with an N50 of 83 Mb. Genome annotation yielded 34,728 predicted protein-coding genes, markedly more than the few other members of the Venerida sequenced so far, with coding regions representing only 2% of the assembly. Indeed, more than half of the genome is composed of repeated elements, including transposable elements. Major chromosome rearrangements were detected between this assembly and another recent assembly derived from a genetically segregated clam stock. Comparative analysis of the clam genome allowed the identification of a marked diversification in immune-related proteins, particularly extensive tandem duplications and expansions in tumor necrosis factors (TNFs) and C1q domain-containing proteins, some of which were previously shown to play a role in clam interactions with infectious microbes. The study also generated a comparative repertoire highlighting the diversity and, in some instances, the specificity of LTR-retrotransposons elements, particularly Steamer elements in bivalves. CONCLUSIONS: The diversity of immune molecules in M. mercenaria may allow this species to cope with varying and complex microbial and environmental landscapes. The repertoire of transposable elements identified in this study, particularly Steamer elements, should be a prime target for the investigation of cancer cell development and transmission among bivalve mollusks.


Assuntos
Mercenaria , Animais , Cromossomos , Elementos de DNA Transponíveis/genética , Mercenaria/genética , América do Norte , Retroelementos
19.
Dis Aquat Organ ; 148: 127-144, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356896

RESUMO

With marine diseases on the rise and increased reliance on molecular tools for disease surveillance, validated pathogen detection capabilities are important for effective management, mitigation, and response to disease outbreaks. At the same time, in an era of continual evolution and advancement of molecular tools for pathogen detection, it is critical to regularly reassess previously established assays to incorporate improvements of common practices and procedures, such as the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines. Here, we reassessed, re-optimized, and improved the quantitative PCR (qPCR) assay routinely used for Quahog Parasite Unknown (QPX) disease monitoring. We made 19 significant changes to the qPCR assay, including improvements to PCR amplification efficiency, DNA extraction efficiency, inhibition testing, incorporation of linearized standards for absolute quantification, an inter-plate calibration technique, and improved conversion from copy number to number of cells. These changes made the assay a more effective and efficient tool for disease monitoring and pathogen detection, with an improved linear relationship with histopathology compared to the previous version of the assay. To support the wide adoption of validated qPCR assays for marine pathogens, we provide a simple workflow that can be applied to the development of new assays, re-optimization of old or suboptimal assays, or assay validation after changes to the protocol and a MIQE-compliant checklist that should accompany any published qPCR diagnostic assay to increase experimental transparency and reproducibility amongst laboratories.


Assuntos
Mercenaria , Parasitos , Animais , Bioensaio/veterinária , Mercenaria/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes
20.
Fish Shellfish Immunol ; 115: 22-26, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052388

RESUMO

Inflammation is a form of innate immune response of living organisms to harmful stimuli. In marine bivalves, inflammation is a common defense mechanism. Several studies have investigated the morphological features of inflammation in bivalves, such as hemocyte infiltration. However, the molecular and biochemical responses associated with inflammation in marine bivalves remain unexplored. Here, we investigated changes in nitric oxide (NO) levels, cyclooxygenase 2 (COX-2) activity, and allograft inflammatory factor-1 (AIF-1) gene expression levels in hemolymph samples collected from Manila clam (Ruditapes philippinarum) exposed to pro- and anti-inflammatory substances. These included the pro-inflammatory agent lipopolysaccharide (LPS), and the nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and diclofenac, all widely used in vertebrates. Our study showed that NO levels, COX-2 activity, and AIF-1 expression increased in response to the treatments with LPS and decreased in response to the treatments with NSAIDs in a concentration-dependent manner. These results suggest that the mechanism of inflammatory responses in bivalves is very similar to that of vertebrates, and we propose that inflammatory responses can be quantified using these techniques and used to determine the physiological status of marine bivalves exposed to biotic or abiotic stresses.


Assuntos
Bivalves/genética , Bivalves/imunologia , Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Proteínas de Ligação ao Cálcio/imunologia , Ciclo-Oxigenase 2/imunologia , Diclofenaco/administração & dosagem , Ibuprofeno/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Óxido Nítrico/imunologia , Poluentes Químicos da Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...