Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(4): e14425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577899

RESUMO

Plants interact in complex networks but how network structure depends on resources, natural enemies and species resource-use strategy remains poorly understood. Here, we quantified competition networks among 18 plants varying in fast-slow strategy, by testing how increased nutrient availability and reduced foliar pathogens affected intra- and inter-specific interactions. Our results show that nitrogen and pathogens altered several aspects of network structure, often in unexpected ways due to fast and slow growing species responding differently. Nitrogen addition increased competition asymmetry in slow growing networks, as expected, but decreased it in fast growing networks. Pathogen reduction made networks more even and less skewed because pathogens targeted weaker competitors. Surprisingly, pathogens and nitrogen dampened each other's effect. Our results show that plant growth strategy is key to understand how competition respond to resources and enemies, a prediction from classic theories which has rarely been tested by linking functional traits to competition networks.


Assuntos
Nitrogênio , Plantas
2.
Trends Ecol Evol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38503639

RESUMO

The global biodiversity crisis has stimulated decades of research on three themes: species coexistence, biodiversity-ecosystem functioning relationships (BEF), and biodiversity-ecosystem functional stability relationships (BEFS). However, studies on these themes are largely independent, creating barriers to an integrative understanding of the causes and consequences of biodiversity. Here we review recent progress towards mechanistic integration of coexistence, BEF, and BEFS. Mechanisms underlying the three themes can be linked in various ways, potentially creating either positive or negative relationships between them. That said, we generally expect positive associations between coexistence and BEF, and between BEF and BEFS. Our synthesis represents an initial step towards integrating causes and consequences of biodiversity; future developments should include more mechanistic approaches and broader ecological contexts.

3.
Commun Biol ; 7(1): 309, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467761

RESUMO

Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Biodiversidade , Plantas
4.
Ecol Lett ; 27(1): e14361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217282

RESUMO

Biodiversity typically increases multiple ecosystem functions simultaneously (multifunctionality) but variation in the strength and direction of biodiversity effects between studies suggests context dependency. To determine how different factors modulate the diversity effect on multifunctionality, we established a large grassland experiment manipulating plant species richness, resource addition, functional composition (exploitative vs. conservative species), functional diversity and enemy abundance. We measured ten above- and belowground functions and calculated ecosystem multifunctionality. Species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Richness increased multifunctionality when communities were assembled with fast-growing species. This was because slow species were more redundant in their functional effects, whereas different fast species promoted different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment and enemy presence. Our study suggests that a shift towards fast-growing communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships.


Assuntos
Ecossistema , Nitrogênio , Biodiversidade , Plantas , Pradaria
5.
Sci Rep ; 13(1): 11570, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463904

RESUMO

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.


Assuntos
Ecossistema , Micobioma , Animais , Humanos , Filogenia , Florestas , Geografia , Mudança Climática , Insetos
6.
Nutr Cycl Agroecosyst ; 126(1): 127-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124631

RESUMO

During the last decades, Alnus viridis has expanded over former montane pastures and meadows, due to land use and abandonment. This nitrogen-fixing woody species has triggered negative agro-environmental impacts, such as nitrogen (N) leaching, soil acidification and a reduced biodiversity. The aim of this study was to estimate the N translocation from A. viridis-encroached areas to adjacent open pastures by Highland cattle. In 2019 and 2020, Highland cattle herds equipped with GPS collars were placed in four A. viridis-encroached paddocks across Italy and Switzerland. The N content was measured in A. viridis leaves, herbaceous vegetation, and cattle dung pats, which were collected throughout the grazing season. Using GPS locations and collar activity sensors, livestock activity phases were discriminated. The N ingested by cattle was estimated through the N content of herbaceous vegetation and A. viridis leaves of vegetation patches visited by cattle during 24 h before dung sampling (N24H). The N content of herbaceous vegetation significantly increased with increasing A. viridis cover. The average N content in dung pats (31.2 ± 3.4 g.kg-1 DM) was higher than average values from literature on grazing cattle. Moreover, it was positively related to the N24H. Most of this N (29.5 ± 10.3 kg ha-1 yr-1) was translocated towards resting areas, which generally occurred on flat open pastures. Our results highlight the potential of Highland cattle to effectively translocate part of the ingested N from A. viridis-encroached towards targeted open areas, thus bringing new perspective for forage yield and quality improvement in the long-term. Supplementary Information: The online version contains supplementary material available at 10.1007/s10705-023-10282-0.

7.
Plant Soil ; 485(1-2): 71-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181279

RESUMO

Plant-soil feedbacks have been recognised as playing a key role in a range of ecological processes, including succession, invasion, species coexistence and population dynamics. However, there is substantial variation between species in the strength of plant-soil feedbacks and predicting this variation remains challenging. Here, we propose an original concept to predict the outcome of plant-soil feedbacks. We hypothesize that plants with different combinations of root traits culture different proportions of pathogens and mutualists in their soils and that this contributes to differences in performance between home soils (cultured by conspecifics) versus away soils (cultured by heterospecifics). We use the recently described root economics space, which identifies two gradients in root traits. A conservation gradient distinguishes fast vs. slow species, and from growth defence theory we predict that these species culture different amounts of pathogens in their soils. A collaboration gradient distinguishes species that associate with mycorrhizae to outsource soil nutrient acquisition vs. those which use a "do it yourself" strategy and capture nutrients without relying strongly on mycorrhizae. We provide a framework, which predicts that the strength and direction of the biotic feedback between a pair of species is determined by the dissimilarity between them along each axis of the root economics space. We then use data from two case studies to show how to apply the framework, by analysing the response of plant-soil feedbacks to measures of distance and position along each axis and find some support for our predictions. Finally, we highlight further areas where our framework could be developed and propose study designs that would help to fill current research gaps. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-05948-1.

8.
Drug Alcohol Depend ; 246: 109846, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004463

RESUMO

BACKGROUND: Deficits in executive function are common in methamphetamine use disorder (MUD), likely contributing to difficulties in sustained treatment success. Cognitive remediation interventions are designed to treat such deficits but have not been adapted to the needs of people with MUD. This study presents a proof-of-concept trial to evaluate a new cognitive remediation program for MUD, Goal Management Training+ (GMT+). METHODS: This was a cluster-randomised crossover trial comparing GMT+ with a psychoeducation-based control (Brain Health Workshop; BHW). GMT+ is a therapist-administered group-based cognitive remediation for executive dysfunction comprising four 90-minute weekly sessions and daily journal activities. BHW is a lifestyle psychoeducation program matched to GMT+ for therapist involvement, format, and duration. Participants (n = 36; GMT n = 17; BHW n = 19) were recruited from therapeutic communities in Victoria, Australia. Primary outcomes included intervention acceptability, feasibility, and improvements in self-reported executive function. Secondary outcomes included cognitive tests of executive function, severity of methamphetamine dependence, craving, and quality of life. We performed mixed linear modelling and calculated Hedges' g effect sizes. RESULTS: GMT+ participant ratings and program retention indicated high acceptability. There was no difference between GMT+ and BHW on self-reported executive function (g = 0.06). Cognitive tasks suggested benefits of GMT+ on information gathering (g = 0.88) and delay-discounting (g = 0.80). Severity of methamphetamine dependence decreased more in GMT+ (g = 1.47). CONCLUSIONS: GMT+ was well-accepted but did not improve self-reported executive functioning. Secondary outcomes suggested GMT+ was beneficial for objective cognitive performance and severity of dependence.


Assuntos
Lesões Encefálicas , Função Executiva , Humanos , Objetivos , Qualidade de Vida , Lesões Encefálicas/complicações , Lesões Encefálicas/psicologia , Resultado do Tratamento , Vitória
9.
Ecol Lett ; 26(3): 411-424, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36688259

RESUMO

In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.


Assuntos
Ecossistema , Herbivoria , Animais , Invertebrados , Biomassa , Plantas , Cadeia Alimentar , Comportamento Predatório
10.
New Phytol ; 237(6): 2332-2346, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527234

RESUMO

Changes in resources (e.g. nitrogen) and enemies (e.g. foliar pathogens) are key drivers of plant diversity and composition. However, their effects have not been connected to the niche and fitness differences that determine multispecies coexistence. Here, we combined a structuralist theoretical approach with a detailed grassland experiment factorially applying nitrogen addition and foliar fungal pathogen suppression to evaluate the joint effect of nitrogen and pathogens on niche and fitness differences, across a gradient from two to six interacting species. Nitrogen addition and pathogen suppression modified species interaction strengths and intrinsic growth rates, leading to reduced multispecies fitness differences. However, contrary to expected, we also observed that they promote stabilising niche differences. Although these modifications did not substantially alter species richness, they predicted major changes in community composition. Indirect interactions between species explained these community changes in smaller assemblages (three and four species) but lost importance in favour of direct pairwise interactions when more species were involved (five and six). Altogether, our work shows that explicitly considering the number of interacting species is critical for better understanding the direct and indirect processes by which nitrogen enrichment and pathogen communities shape coexistence in grasslands.


Assuntos
Pradaria , Nitrogênio , Nitrogênio/farmacologia , Plantas/microbiologia , Ecossistema , Biodiversidade
11.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376602

RESUMO

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Plantas
12.
Nature ; 611(7935): 240-241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323896
13.
Sci Data ; 9(1): 62, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232978

RESUMO

International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.


Assuntos
Endófitos , Fungos , Insetos , Animais , Biodiversidade , Árvores
14.
Nat Commun ; 12(1): 3918, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168127

RESUMO

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Assuntos
Biodiversidade , Ecossistema , Plantas , Microbiologia do Solo , Agricultura , Animais , Europa (Continente) , Cadeia Alimentar , Florestas , Pradaria , Herbivoria , Insetos
15.
Trends Ecol Evol ; 36(7): 651-661, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33888322

RESUMO

Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.


Assuntos
Ecossistema , Solo , Biodiversidade , Retroalimentação , Plantas
16.
Microorganisms ; 9(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672221

RESUMO

Using 642 forest plots from three regions in Germany, we analyzed the direct and indirect effects of forest management intensity and of environmental variables on lichen functional diversity (FDis). Environmental stand variables were affected by management intensity and acted as an environmental filter: summing direct and indirect effects resulted in a negative total effect of conifer cover on FDis, and a positive total effect of deadwood cover and standing tree biomass. Management intensity had a direct positive effect on FDis, which was compensated by an indirect negative effect via reduced standing tree biomass and lichen species richness, resulting in a negative total effect on FDis and the FDis of adaptation-related traits (FDisAd). This indicates environmental filtering of management and stronger niche partitioning at a lower intensity. In contrast, management intensity had a positive total effect on the FDis of reproduction-, dispersal- and establishment-related traits (FDisRe), mainly because of the direct negative effect of species richness, indicating functional over-redundancy, i.e., most species cluster into a few over-represented functional entities. Our findings have important implications for forest management: high lichen functional diversity can be conserved by promoting old, site-typical deciduous forests with a high richness of woody species and large deadwood quantity.

17.
J Environ Manage ; 279: 111629, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187787

RESUMO

Land-use intensification is a major threat to biodiversity in agricultural grasslands and fertilization is one of the main drivers. The effects of fertilization on biodiversity and plant functional composition (community-weighted mean traits and mean ecological indicator values) are well studied in lowland regions, but have received less attention in mountain grasslands. Moreover, in inner-alpine dry valleys, fertilizer is often applied in combination with irrigation, and irrigation effects are less well known. We experimentally tested the effects of fertilization and irrigation on vascular plant species richness and the functional composition of mountain grasslands in the Swiss Alps. After five years, fertilization increased yield but the relationship was quadratic with maximum yield reached at intermediate fertilizer levels (58 kg N ha-1year-1). The species richness of all vascular plants and forbs decreased, on average, by 6 and 5 species respectively, per 50 kg N of extra fertilizer (ha-1 year-1) applied. Fertilization also favored fast-growing plants (increased mean specific leaf area) and plants typically found in productive environments (increased mean indicator values for soil productivity and moisture). In contrast, we found no effects of irrigation on plant community composition, which suggests that irrigation does not affect vascular plant diversity to the same extent as fertilization in these mesic mountain hay meadows, at least in the mid-term. Our finding that maximum yield can be achieved at intermediate fertilizer levels is very important from an applied, agronomical and conservation point of view. It suggests that without loss of yield, farming costs and at the same time environmental pollution and negative effects on biodiversity can be reduced by applying less fertilizer. We therefore recommend maintaining non-intensive land use and keeping fertilizer inputs as low as possible to maintain the high plant diversity of mountain grasslands.


Assuntos
Biodiversidade , Pradaria , Fertilização , Fertilizantes , Plantas
18.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093203

RESUMO

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Florestas , Pradaria
19.
Nat Commun ; 11(1): 4180, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826915

RESUMO

Ecologists have long argued that higher functioning in diverse communities arises from the niche differences stabilizing species coexistence and from the fitness differences driving competitive dominance. However, rigorous tests are lacking. We couple field-parameterized models of competition between 10 annual plant species with a biodiversity-functioning experiment under two contrasting environmental conditions, to study how coexistence determinants link to biodiversity effects (selection and complementarity). We find that complementarity effects positively correlate with niche differences and selection effects differences correlate with fitness differences. However, niche differences also contribute to selection effects and fitness differences to complementarity effects. Despite this complexity, communities with an excess of niche differences (where niche differences exceeded those needed for coexistence) produce more biomass and have faster decomposition rates under drought, but do not take up nutrients more rapidly. We provide empirical evidence that the mechanisms determining coexistence correlate with those maximizing ecosystem functioning.


Assuntos
Biodiversidade , Biomassa , Ecossistema , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal , Plantas/classificação , Dinâmica Populacional , Espanha
20.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815990

RESUMO

Recent studies revealed a high diversity of fungal endophytes in traded tree seeds, including potential plant pathogens. The factors determining richness and composition of seed mycobiomes are poorly understood, but might be an important determinant for tree health. We assessed the relative impact of host identity, site, several site-specific environmental factors, and whether the host was sampled in its native or non-native distribution range, on the richness and composition of fungal seed endophytes of nine tree species across 15 sites in Europe and North America. Our results show that fungal richness was affected by host identity, but not by environmental variables or host distribution range. Fungal community composition was primarily driven by host identity, and to a lesser extent by environment. Around 25% of the 2147 amplicon sequence variants (ASVs) were generalists appearing on both continents and in both gymnosperms and angiosperms. Around 63% of the ASVs appeared in only gymnosperms or angiosperms, and 33% of the ASVs were associated with a single host species, while none were found in all tree species. Our results suggest that although seed trade might facilitate movements of fungi, their establishment and spread in the new environment might be limited by host availability.


Assuntos
Endófitos , Árvores , Biodiversidade , Endófitos/genética , Europa (Continente) , Fungos/genética , América do Norte , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...