Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 18(11): 1196-203, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21984211

RESUMO

We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.


Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Histona Acetiltransferases/genética , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell Biol ; 28(7): 2257-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18212047

RESUMO

Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is found exclusively associated with the NuA4 complex in vivo. It serves as a platform that coordinates the assembly of functional groups of subunits into the native NuA4 complex. Eaf1 shows structural similarities with human p400/Domino, a subunit of the NuA4-related TIP60 complex. On the other hand, p400 also possesses an SWI2/SNF2 family ATPase domain that is absent from the yeast NuA4 complex. This domain is highly related to the yeast Swr1 protein, which is responsible for the incorporation of histone variant H2AZ in chromatin. Since all of the components of the TIP60 complex are homologous to SWR1 or NuA4 subunits, we proposed that the human complex corresponds to a physical merge of two yeast complexes. p400 function in TIP60 then would be accomplished in yeast by cooperation between SWR1 and NuA4. In agreement with such a model, NuA4 and SWR1 mutants show strong genetic interactions, NuA4 affects histone H2AZ incorporation/acetylation in vivo, and both preset the PHO5 promoter for activation. Interestingly, the expression of a chimeric Eaf1-Swr1 protein recreates a single human-like complex in yeast cells. Our results identified the key central subunit for the structure and functions of the NuA4 histone acetyltransferase complex and functionally linked this activity with the histone variant H2AZ from yeast to human cells.


Assuntos
Acetiltransferases/fisiologia , Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Histona Acetiltransferases/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Acetilação , Acetiltransferases/química , Fosfatase Ácida , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Células Eucarióticas/metabolismo , Evolução Molecular , Histona Acetiltransferases/química , Humanos , Lisina Acetiltransferase 5 , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
3.
Mol Cell Biol ; 25(18): 8179-90, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135807

RESUMO

The NuA4 complex is a histone H4/H2A acetyltransferase involved in transcription and DNA repair. While histone acetylation is important in many processes, it has become increasingly clear that additional histone modifications also play a crucial interrelated role. To understand how NuA4 action is regulated, we tested various H4 tail peptides harboring known modifications in HAT assays. While dimethylation at arginine 3 (R3M) had little effect on NuA4 activity, phosphorylation of serine 1 (S1P) strongly decreased the ability of the complex to acetylate H4 peptides. However, R3M in combination with S1P alleviates the repression of NuA4 activity. Chromatin from cells treated with DNA damage-inducing agents shows an increase in phosphorylation of serine 1 and a concomitant decrease in H4 acetylation. We found that casein kinase 2 phosphorylates histone H4 and associates with the Rpd3 deacetylase complex, demonstrating a physical connection between phosphorylation of serine 1 and unacetylated H4 tails. Chromatin immunoprecipitation experiments also link local phosphorylation of H4 with its deacetylation, during both transcription and DNA repair. Time course chromatin immunoprecipitation data support a model in which histone H4 phosphorylation occurs after NuA4 action during double-strand break repair at the step of chromatin restoration and deacetylation. These findings demonstrate that H4 phospho-serine 1 regulates chromatin acetylation by the NuA4 complex and that this process is important for normal gene expression and DNA repair.


Assuntos
Acetiltransferases/metabolismo , Reparo do DNA , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Acetilação , Sequência de Aminoácidos , Caseína Quinase II/metabolismo , Cromatina/metabolismo , Dano ao DNA , Farmacorresistência Fúngica/genética , Histona Acetiltransferases , Histona Desacetilases/metabolismo , Histonas/genética , Hidroxiureia/farmacologia , Mesilatos/farmacologia , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Cell Biol ; 25(19): 8430-43, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166626

RESUMO

We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Histonas/metabolismo , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Imunoprecipitação da Cromatina , DNA/química , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Epitopos/química , Fase G1 , Deleção de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Lisina/química , Metilação , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares , Fosforilação , Proteínas Metiltransferases , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Tempo
5.
Mol Cell ; 16(6): 979-90, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15610740

RESUMO

Yeast histone H2A is phosphorylated on Ser129 upon DNA damage, an event required for efficient repair. We show that phosphorylation occurs rapidly over a large region around DNA double-strand breaks (DSBs). Histone H4 acetylation is also important for DSB repair, and we found that the NuA4 HAT complex associates specifically with phospho-H2A peptides. A single NuA4 subunit, Arp4, is responsible for the interaction. The NuA4 complex is recruited to a DSB concomitantly with the appearance of H2A P-Ser129 and Arp4 is important for this binding. Arp4 is also a subunit of the Ino80 and Swr1 chromatin remodeling complexes, which also interact with H2A P-Ser129 and are recruited to DSBs. This association again requires Arp4 but also prior NuA4 recruitment and action. Thus, phosphorylation of H2A at DNA damage sites creates a mark recognized by different chromatin modifiers. This interaction leads to stepwise chromatin reconfiguration, allowing efficient DNA repair.


Assuntos
Cromatina/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA/metabolismo , Histonas/metabolismo , Acetiltransferases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Histona Acetiltransferases , Fosforilação , Serina/metabolismo , Leveduras/genética , Leveduras/metabolismo
6.
EMBO J ; 23(13): 2597-607, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15175650

RESUMO

The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.


Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Fosfatase Ácida , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Proteínas Fúngicas/genética , Histona Acetiltransferases , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta ; 1677(1-3): 158-64, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15020056

RESUMO

DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Drosophila , Genoma , Proteínas de Ligação a RNA , Acetiltransferases/genética , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Reparo do DNA/genética , Variação Genética , Histona Acetiltransferases , Histonas/genética , Histonas/metabolismo , Humanos , Substâncias Macromoleculares , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
8.
Genes Dev ; 17(11): 1415-28, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12782659

RESUMO

Drosophila Enhancer of Polycomb, E(Pc), is a suppressor of position-effect variegation and an enhancer of both Polycomb and trithorax mutations. A homologous yeast protein, Epl1, is a subunit of the NuA4 histone acetyltransferase complex. Epl1 depletion causes cells to accumulate in G2/M and global loss of acetylated histones H4 and H2A. In relation to the Drosophila protein, mutation of Epl1 suppresses gene silencing by telomere position effect. Epl1 protein is found in the NuA4 complex and a novel highly active smaller complex named Piccolo NuA4 (picNuA4). The picNuA4 complex contains Esa1, Epl1, and Yng2 as subunits and strongly prefers chromatin over free histones as substrate. Epl1 conserved N-terminal domain bridges Esa1 and Yng2 together, stimulating Esa1 catalytic activity and enabling acetylation of chromatin substrates. A recombinant picNuA4 complex shows characteristics similar to the native complex, including strong chromatin preference. Cells expressing only the N-terminal half of Epl1 lack NuA4 HAT activity, but possess picNuA4 complex and activity. These results indicate that the essential aspect of Esa1 and Epl1 resides in picNuA4 function. We propose that picNuA4 represents a nontargeted histone H4/H2A acetyltransferase activity responsible for global acetylation, whereas the NuA4 complex is recruited to specific genomic loci to perturb locally the dynamic acetylation/deacetylation equilibrium.


Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Animais , Cromatina/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Histona Acetiltransferases , Humanos , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...