Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 1031-1041, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521004

RESUMO

In this study, we explored the use of lipid mesophases (LMPs) as a biocompatible and biodegradable material for sustained drug delivery. Our hypothesis centered on leveraging the high surface-to-volume ratio of LMP-based beads to enhance strength, stability, and surface interaction compared to the LMP bulk gel. To modulate drug release, we introduced antioxidant vitamin E into the beads, influencing mesophase topologies and controlling drug diffusion coefficients. Four drugs with distinct chemical properties and intended for three different pathologies and administration routes were successfully loaded into the beads with a drug entrapment efficiency exceeding 80 %. Notably, our findings revealed sustained drug release, irrespective of the drugs' chemical properties, culminating in the development of an injectable formulation. This formulation allows direct administration into the target site, minimizing systemic exposure, and thereby mitigating adverse effects. Our approach demonstrates the potential of LMP-based beads for tailored drug delivery systems with broad applications in diverse therapeutic scenarios.


Assuntos
Antioxidantes , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Liberação Controlada de Fármacos , Lipídeos
2.
Int J Pharm ; 643: 123230, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454830

RESUMO

Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson's disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease. These co-loaded vesicles were prepared using a saturated phospholipid and structurally related cationic or analogue N-oxide surfactants and showed different properties, based on their composition. In particular, ex-vivo permeability tests using porcine nasal mucosa were performed, denoting that subtle variations of the lipids structure can significantly affect the delivery of LD to the target site.


Assuntos
Levodopa , Doença de Parkinson , Humanos , Levodopa/uso terapêutico , Lipossomos/química , Doença de Parkinson/tratamento farmacológico , Portadores de Fármacos/química , Ácido Ascórbico
3.
Mol Pharm ; 19(3): 788-797, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170971

RESUMO

Although liposomes are largely investigated as drug delivery systems, they can also exert a pharmacological activity if devoid of an active principle as a function of their composition. Specifically, charged liposomes can electrostatically interact with bacterial cells and, in some cases, induce bacterial cell death. Moreover, they also show a high affinity toward bacterial biofilms. We investigated the physicochemical and antimicrobial properties of liposomes formulated with a natural phospholipid and four synthetic l-prolinol-derived surfactants at 9/1 and 8/2 molar ratios. The synthetic components differ in the nature of the polar headgroup (quaternary ammonium salt or N-oxide) and/or the length of the alkyl chain (14 or 16 methylenes). These differences allowed us to investigate the effect of the molecular structure of liposome components on the properties of the aggregates and their ability to interact with bacterial cells. The antimicrobial properties of the different formulations were assessed against Gram-negative and Gram-positive bacteria and fungi. Drug-drug interactions with four classes of available clinical antibiotics were evaluated against Staphylococcus spp. The target of each class of antibiotics plays a pivotal role in exerting a synergistic effect. Our results highlight that the liposomal formulations with an N-oxide moiety are required for the antibacterial activity against Gram-positive bacteria. In particular, we observed a synergism between oxacillin and liposomes containing 20 molar percentage of N-oxide surfactants onStaphylococcus haemolyticus, Staphylococcus epidermidis, andStaphylococcus aureus. In the case of liposomes containing 20 molar percentage of the N-oxide surfactant with 14 carbon atoms in the alkyl chain for S. epidermidis, the minimum inhibitory concentration was 0.125 µg/mL, well below the breakpoint value of the antibiotic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Lipossomos/química , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Staphylococcus epidermidis , Tensoativos/química , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...