Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Phys Chem Chem Phys ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767271

RESUMO

The interaction of NO2 with organic interfaces is critical in the development of NO2 sensing and trapping technologies, and equally so to the atmospheric processing of marine and continental aerosol. Recent studies point to the importance of surface oxygen groups in these systems, however the role of specific functional groups on the microscopic level has yet to be fully established. In the present study, we aim to provide fundamental information on the interaction and potential binding of NO2 at atmospherically relevant organic interfaces that may also help inform innovation in NO2 sensing and trapping development. We then present an investigation into the structural changes induced by NO2 at the surface of propylene carbonate (PC), an environmentally relevant carbonate ester. Surface-sensitive vibrational spectra of the PC liquid surface are acquired before, during, and after exposure to NO2 using infrared reflection-absorption spectroscopy (IRRAS). Analysis of vibrational changes at the liquid surface reveal that NO2 preferentially interacts with the carbonyl of PC at the interface, forming a distribution of binding symmetries. At low ppm levels, NO2 saturates the PC surface within 10 minutes and the perturbations to the surface are constant over time during the flow of NO2. Upon removal of NO2 flow, and under atmospheric pressures, these interactions are reversible, and the liquid surface structure of PC recovers completely within 30 min.

2.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690736

RESUMO

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Assuntos
Gânglios Espinais , Proteínas de Membrana , Dor , Animais , Camundongos , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Dor/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Nociceptores/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia
3.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464066

RESUMO

Long-term sustained pain in the absence of acute physical injury is a prominent feature of chronic pain conditions. While neurons responding to noxious stimuli have been identified, understanding the signals that persist without ongoing painful stimuli remains a challenge. Using an ethological approach based on the prioritization of adaptive survival behaviors, we determined that neuropeptide Y (NPY) signaling from multiple sources converges on parabrachial neurons expressing the NPY Y1 receptor to reduce sustained pain responses. Neural activity recordings and computational modeling demonstrate that activity in Y1R parabrachial neurons is elevated following injury, predicts functional coping behavior, and is inhibited by competing survival needs. Taken together, our findings suggest that parabrachial Y1 receptor-expressing neurons are a critical hub for endogenous analgesic pathways that suppress sustained pain states.

4.
Pain ; 165(3): 573-588, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751532

RESUMO

ABSTRACT: Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we used a comprehensive array of approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.


Assuntos
Dor Crônica , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso , Neuralgia do Trigêmeo , Enzimas de Conjugação de Ubiquitina , Animais , Ratos , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Gânglios Espinais , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Neuralgia do Trigêmeo/tratamento farmacológico , Neuralgia do Trigêmeo/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Administração Intranasal , Proteínas do Tecido Nervoso/antagonistas & inibidores
6.
Pain ; 165(4): 866-883, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862053

RESUMO

ABSTRACT: The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Masculino , Feminino , Humanos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação para Cima , Ratos Sprague-Dawley , Neuralgia/genética , Nervos Espinhais , Gânglios Espinais , Cisteína Endopeptidases/genética
7.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972067

RESUMO

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Assuntos
Dor Crônica , Peptidomiméticos , Ratos , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Peptidomiméticos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglios Espinais/metabolismo
8.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37824208

RESUMO

Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Humanos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Hibridização in Situ Fluorescente , Neuralgia/metabolismo , Interneurônios/metabolismo , Mamíferos
9.
Nutrients ; 15(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630769

RESUMO

(1) Background: Good adherence to a Phe-restricted diet supplemented with an adequate amount of a protein substitute (PS) is important for good clinical outcomes in PKU. Glycomacropeptide (cGMP)-PSs are innovative, palatable alternatives to amino acid-based PSs (AA-PS). This study aimed to evaluate a new cGMP-PS in liquid and powder formats in PKU. (2) Methods: Children and adults with PKU recruited from eight centres were prescribed at least one serving/day of cGMP-PS for 7-28 days. Adherence, acceptability, and gastrointestinal tolerance were recorded at baseline and the end of the intervention. The blood Phe levels reported as part of routine care during the intervention were recorded. (3) Results: In total, 23 patients (powder group, n = 13; liquid group, n = 10) completed the study. The majority assessed the products to be palatable (77% of powder group; 100% of liquid group) and well tolerated; the adherence to the product prescription was good. A total of 14 patients provided blood Phe results during the intervention, which were within the target therapeutic range for most patients (n = 11) at baseline and during the intervention. (4) Conclusions: These new cGMP-PSs were well accepted and tolerated, and their use did not adversely affect blood Phe control.


Assuntos
Caseínas , Fragmentos de Peptídeos , Adulto , Criança , Humanos , Pós , Suplementos Nutricionais , GMP Cíclico
10.
Nutrients ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630788

RESUMO

(1) Background: Poor palatability, large volume, and lack of variety of some liquid and powdered protein substitutes (PSs) for patients with phenylketonuria (PKU) and tyrosinemia (TYR) can result in poor adherence. This study aimed to evaluate a new unflavoured, powdered GMP-based PS designed to be mixed into drinks, foods, or with other PSs, in patients with PKU and TYR. (2) Methods: Paediatric and adult community-based patients were recruited from eight metabolic centres and prescribed ≥1 sachet/day (10 g protein equivalent (PE)) of the Mix-In-style PS over 28 days. Adherence, palatability, GI tolerance, and metabolic control were recorded at baseline and follow-up. Patients who completed at least 7 days of intervention were included in the final analysis. (3) Results: Eighteen patients (3-45 years, nine males) with PKU (n = 12) and TYR (n = 6) used the Mix-In-style PS for ≥7 days (mean 26.4 days (SD 4.6), range 11-28 days) alongside their previous PS, with a mean intake of 16.7 g (SD 7.7) PE/day. Adherence was 86% (SD 25), and GI tolerance was stable, with n = 14 experiencing no/no new symptoms and n = 3 showing improved symptoms compared to baseline. Overall palatability was rated satisfactory by 78% of patients, who successfully used the Mix-In-style PS in various foods and drinks, including smoothies, squash, and milk alternatives, as a top-up to meet their protein needs. There was no concern regarding safety/metabolic control during the intervention. (4) Conclusions: The 'Mix-In'-style PS was well adhered to, accepted, and tolerated. Collectively, these data show that providing a flexible, convenient, and novel format of PS can help with adherence and meet patients' protein needs.


Assuntos
Fenilcetonúrias , Tirosinemias , Glicoproteínas/efeitos adversos , Glicoproteínas/uso terapêutico , Glicopeptídeos/efeitos adversos , Glicopeptídeos/uso terapêutico , Fenilcetonúrias/dietoterapia , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Tirosinemias/dietoterapia , Resultado do Tratamento , Trato Gastrointestinal/metabolismo , Alimentos , Bebidas
11.
Phys Chem Chem Phys ; 25(35): 23963-23976, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37644802

RESUMO

The liquid structure of systems wherein water is limited in concentration or through geometry is of great interest in various fields such as biology, materials science, and electrochemistry. Here, we present a combined polarized Raman and molecular dynamics investigation of the structural changes that occur as water is added incrementally to propylene carbonate (PC), a polar, aprotic solvent that is important in lithium-ion batteries. Polarized Raman spectra of PC solutions were collected for water mole fractions 0.003 ≤ χwater ≤ 0.296, which encompasses the solubility range of water in PC. The novel approach taken herein provides additional hydrogen bond and solvation characterization of this system that has not been achievable in previous studies. Analysis of the polarized carbonyl Raman band in conjunction with simulations demonstrated that the bulk structure of the solvent remained unperturbed upon the addition of water. Experimental spectra in the O-H stretching region were decomposed through Gaussian fitting into sub-bands and comparison to studies of dilute HOD in D2O. With the aid of simulations, we identified these different bands as water arrangements having different degrees of hydrogen bonding. The observed water structure within PC indicates that water tends to self-aggregate, forming a hydrogen bond network that is distinctly different from the bulk and dependent on concentration. For example, at moderate concentrations, the most likely aggregate structures are chains of water molecules, each with two hydrogen bonds.

12.
PNAS Nexus ; 2(8): pgad261, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37649580

RESUMO

Tissue injury creates a delicate balance between latent pain sensitization (LS) and compensatory endogenous analgesia. Inhibitory G-protein-coupled receptor (GPCR) interactions that oppose LS, including µ-opioid receptor (MOR) or neuropeptide Y Y1 receptor (Y1R) activity, persist in the spinal cord dorsal horn (DH) for months, even after the resolution of normal pain thresholds. Here, we demonstrate that following recovery from surgical incision, a potent endogenous analgesic synergy between MOR and Y1R activity persists within DH interneurons to reduce the intensity and duration of latent postoperative hypersensitivity and ongoing pain. Failure of such endogenous GPCR signaling to maintain LS in remission may underlie the transition from acute to chronic pain states.

13.
Wellcome Open Res ; 8: 123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408610

RESUMO

The Darwin Tree of Life (DToL) project aims to sequence and assemble high-quality genomes from all eukaryote species in Britain and Ireland, with the first phase of the project concentrating on family-level coverage plus species of particular ecological, biomedical or evolutionary interest. We summarise the processes involved in (1) assessing the UK arthropod fauna and the status of individual species on UK lists; (2) prioritising and collecting species for initial genome sequencing; (3) handling methods to ensure that high-quality genomic DNA is preserved; and (4) compiling standard operating procedures for processing specimens for genome sequencing, identification verification and voucher specimen curation. We briefly explore some lessons learned from the pilot phase of DToL and the impact of the Covid-19 pandemic.

14.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37502910

RESUMO

Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we employed a comprehensive array of investigative approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve (CCI-ION), 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.

15.
ACS Omega ; 8(27): 24341-24350, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457446

RESUMO

Mass spectrometry is a ubiquitous technique capable of complex chemical analysis. The fragmentation patterns that appear in mass spectrometry are an excellent target for artificial intelligence methods to automate and expedite the analysis of data to identify targets such as functional groups. To develop this approach, we trained models on electron ionization (a reproducible hard fragmentation technique) mass spectra so that not only the final model accuracies but also the reasoning behind model assignments could be evaluated. The convolutional neural network (CNN) models were trained on 2D images of the spectra using transfer learning of Inception V3, and the logistic regression models were trained using array-based data and Scikit Learn implementation in Python. Our training dataset consisted of 21,166 mass spectra from the United States' National Institute of Standards and Technology (NIST) Webbook. The data was used to train models to identify functional groups, both specific (e.g., amines, esters) and generalized classifications (aromatics, oxygen-containing functional groups, and nitrogen-containing functional groups). We found that the highest final accuracies on identifying new data were observed using logistic regression rather than transfer learning on CNN models. It was also determined that the mass range most beneficial for functional group analysis is 0-100 m/z. We also found success in correctly identifying functional groups of example molecules selected from both the NIST database and experimental data. Beyond functional group analysis, we also have developed a methodology to identify impactful fragments for the accurate detection of the models' targets. The results demonstrate a potential pathway for analyzing and screening substantial amounts of mass spectral data.

16.
Front Pain Res (Lausanne) ; 4: 1183553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332477

RESUMO

Neuropathic and nociplastic pain are major causes of pain and involve brain areas such as the central nucleus of the amygdala (CeA). Within the CeA, neurons expressing protein kinase c-delta (PKCδ) or somatostatin (SST) have opposing roles in pain-like modulation. In this manuscript, we describe our progress towards developing a 3-D computational model of PKCδ and SST neurons in the CeA and the use of this model to explore the pharmacological targeting of these two neural populations in modulating nociception. Our 3-D model expands upon our existing 2-D computational framework by including a realistic 3-D spatial representation of the CeA and its subnuclei and a network of directed links that preserves morphological properties of PKCδ and SST neurons. The model consists of 13,000 neurons with cell-type specific properties and behaviors estimated from laboratory data. During each model time step, neuron firing rates are updated based on an external stimulus, inhibitory signals are transmitted between neurons via the network, and a measure of nociceptive output from the CeA is calculated as the difference in firing rates of pro-nociceptive PKCδ neurons and anti-nociceptive SST neurons. Model simulations were conducted to explore differences in output for three different spatial distributions of PKCδ and SST neurons. Our results show that the localization of these neuron populations within CeA subnuclei is a key parameter in identifying spatial and cell-type pharmacological targets for pain.

17.
Pain ; 164(12): 2696-2710, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366599

RESUMO

ABSTRACT: Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.


Assuntos
Neuralgia , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Masculino , Ratos , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Células Receptoras Sensoriais/metabolismo , Sódio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Langmuir ; 39(15): 5505-5513, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37027519

RESUMO

The chemistry and structure of the air-ocean interface modulate biogeochemical processes between the ocean and atmosphere and therefore impact sea spray aerosol properties, cloud and ice nucleation, and climate. Protein macromolecules are enriched in the sea surface microlayer and have complex adsorption properties due to the unique molecular balance of hydrophobicity and hydrophilicity. Additionally, interfacial adsorption properties of proteins are of interest as important inputs for ocean climate modeling. Bovine serum albumin is used here as a model protein to investigate the dynamic surface behavior of proteins under several variable conditions including solution ionic strength, temperature, and the presence of a stearic acid (C17COOH) monolayer at the air-water interface. Key vibrational modes of bovine serum albumin are examined via infrared reflectance-absorbance spectroscopy, a specular reflection method that ratios out the solution phase and highlights the aqueous surface to determine, at a molecular level, the surface structural changes and factors affecting adsorption to the solution surface. Amide band reflection absorption intensities reveal the extent of protein adsorption under each set of conditions. Studies reveal the nuanced behavior of protein adsorption impacted by ocean-relevant sodium concentrations. Moreover, protein adsorption is most strongly affected by the synergistic effects of divalent cations and increased temperature.


Assuntos
Soroalbumina Bovina , Água , Soroalbumina Bovina/química , Água/química , Adsorção , Temperatura , Cátions , Propriedades de Superfície
19.
J Phys Chem B ; 127(7): 1618-1627, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757371

RESUMO

This work summarizes a theoretical analysis of the perturbation on Raman spectra in aqueous NaCl and KCl solutions with the aim to detect ion pairs. The experimental Raman spectra, both polarized and depolarized, are perturbed by these ions to a comparable extent or somewhat less by KCl than NaCl. This result appears to be contrary to the molecular dynamics (MD) simulation showing that the isolated and separated ions of KCl should have a larger perturbation than NaCl, as the solvation shell of K+ is larger than that of Na+. The apparent discrepancy signifies the ion pair formation which is more substantial for KCl than NaCl. The MD simulations and quantum chemical calculations revealed that KCl forms ion pairs more than NaCl and that the ion pair formation reduces the perturbation on the Raman spectra more for KCl. The present analysis shows that the perturbed Raman spectra provide a useful sign to evaluate the ion pair formation in aqueous solutions.

20.
Biol Psychiatry ; 93(4): 370-381, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36473754

RESUMO

BACKGROUND: The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. METHODS: To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. RESULTS: We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. CONCLUSIONS: These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.


Assuntos
Núcleo Central da Amígdala , Núcleos Parabraquiais , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor , Núcleo Central da Amígdala/metabolismo , Neurônios/fisiologia , Emoções , Núcleos Parabraquiais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...