Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Science ; 379(6633): eabg2752, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795805

RESUMO

The induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1c+CD5+ DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy. CD5+ DC numbers increased during ICB therapy, and low interleukin-6 (IL-6) concentrations promoted their de novo differentiation. Mechanistically, CD5 expression by DCs was required to generate optimally protective CD5hi T helper and CD8+ T cells; further, deletion of CD5 from T cells dampened tumor elimination in response to ICB therapy in vivo. Thus, CD5+ DCs are an essential component of optimal ICB therapy.


Assuntos
Antígenos CD5 , Linfócitos T CD8-Positivos , Células Dendríticas , Inibidores de Checkpoint Imunológico , Imunoterapia , Melanoma , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Melanoma/tratamento farmacológico , Antígenos CD5/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia
3.
Nature ; 610(7933): 737-743, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071167

RESUMO

The mutualistic relationship of gut-resident microbiota and the host immune system promotes homeostasis that ensures maintenance of the microbial community and of a largely non-aggressive immune cell compartment1,2. The consequences of disturbing this balance include proximal inflammatory conditions, such as Crohn's disease, and systemic illnesses. This equilibrium is achieved in part through the induction of both effector and suppressor arms of the adaptive immune system. Helicobacter species induce T regulatory (Treg) and T follicular helper (TFH) cells under homeostatic conditions, but induce inflammatory T helper 17 (TH17) cells when induced Treg (iTreg) cells are compromised3,4. How Helicobacter and other gut bacteria direct T cells to adopt distinct functions remains poorly understood. Here we investigated the cells and molecular components required for iTreg cell differentiation. We found that antigen presentation by cells expressing RORγt, rather than by classical dendritic cells, was required and sufficient for induction of Treg cells. These RORγt+ cells-probably type 3 innate lymphoid cells and/or Janus cells5-require the antigen-presentation machinery, the chemokine receptor CCR7 and the TGFß activator αv integrin. In the absence of any of these factors, there was expansion of pathogenic TH17 cells instead of iTreg cells, induced by CCR7-independent antigen-presenting cells. Thus, intestinal commensal microbes and their products target multiple antigen-presenting cells with pre-determined features suited to directing appropriate T cell differentiation programmes, rather than a common antigen-presenting cell that they endow with appropriate functions.


Assuntos
Diferenciação Celular , Microbioma Gastrointestinal , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase , Imunidade Inata , Integrina alfaV/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores CCR7/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia
4.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34224345

RESUMO

Capsular polysaccharides (CPSs) protect bacteria from host and environmental factors. Many bacteria can express different CPSs and these CPSs are phase variable. For example, Bacteroides thetaiotaomicron (B. theta) is a prominent member of the human gut microbiome and expresses eight different capsular polysaccharides. Bacteria, including B. theta, have been shown to change their CPSs to adapt to various niches such as immune, bacteriophage, and antibiotic perturbations. However, there are limited tools to study CPSs and fundamental questions regarding phase variance, including if gut bacteria can express more than one capsule at the same time, remain unanswered. To better understand the roles of different CPSs, we generated a B. theta CPS1-specific antibody and a flow cytometry assay to detect CPS expression in individual bacteria in the gut microbiota. Using these novel tools, we report for the first time that bacteria can simultaneously express multiple CPSs. We also observed that nutrients such as glucose and salts had no effect on CPS expression. The ability to express multiple CPSs at the same time may provide bacteria with an adaptive advantage to thrive amid changing host and environmental conditions, especially in the intestine.


Assuntos
Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos Bacterianos/biossíntese , Cápsulas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Microbioma Gastrointestinal , Humanos
5.
Nat Immunol ; 21(11): 1384-1396, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989327

RESUMO

T follicular helper (TFH) cells are critical in adaptive immune responses to pathogens and vaccines; however, what drives the initiation of their developmental program remains unclear. Studies suggest that a T cell antigen receptor (TCR)-dependent mechanism may be responsible for the earliest TFH cell-fate decision, but a critical aspect of the TCR has been overlooked: tonic TCR signaling. We hypothesized that tonic signaling influences early TFH cell development. Here, two murine TCR-transgenic CD4+ T cells, LLO56 and LLO118, which recognize the same antigenic peptide presented on major histocompatibility complex molecules but experience disparate strengths of tonic signaling, revealed low tonic signaling promotes TFH cell differentiation. Polyclonal T cells paralleled these findings, with naive Nur77 expression distinguishing TFH cell potential. Two mouse lines were also generated to both increase and decrease tonic signaling strength, directly establishing an inverse relationship between tonic signaling strength and TFH cell development. Our findings elucidate a central role for tonic TCR signaling in early TFH cell-lineage decisions.


Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Antígenos H-2/imunologia , Imunização , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Peptídeos/imunologia
6.
Immunohorizons ; 4(8): 485-497, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769180

RESUMO

The contribution of self-peptide-MHC signaling in CD4+ T cells to metabolic programming has not been definitively established. In this study, we employed LLO118 and LLO56, two TCRtg CD4+ T cells that recognize the same Listeria epitope. We previously have shown that LLO56 T cells are highly self-reactive and respond poorly in a primary infection, whereas LLO118 cells, which are less self-reactive, respond well during primary infection. We performed metabolic profiling and found that naive LLO118 had a dramatically higher basal respiration rate, a higher maximal respiration rate, and a higher glycolytic rate relative to LLO56. The LLO118 cells also exhibited a greater uptake of 2-NBD-glucose, in vitro and in vivo. We extended the correlation of low self-reactivity (CD5lo) with high basal metabolism using two other CD4+ TCRtg cells with known differences in self-reactivity, AND and Marilyn. We hypothesized that the decreased metabolism resulting from a strong interaction with self was mediated through TCR signaling. We then used an inducible knock-in mouse expressing the Scn5a voltage-gated sodium channel. This channel, when expressed in peripheral T cells, enhanced basal TCR-mediated signaling, resulting in decreased respiration and glycolysis, supporting our hypothesis. Genes and metabolites analysis of LLO118 and LLO56 T cells revealed significant differences in their metabolic pathways, including the glycerol phosphate shuttle. Inhibition of this pathway reverts the metabolic state of the LLO118 cells to be more LLO56 like. Overall, these studies highlight the critical relationship between peripheral TCR-self-pMHC interaction, metabolism, and the immune response to infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Metabolismo Basal , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
7.
Front Immunol ; 11: 690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351514

RESUMO

The interplay between the immune system and the microbiota in the human intestine dictates states of health vs. disease. Polysaccharide capsules are critical elements of bacteria that protect bacteria against environmental and host factors, including the host immune system. This review summarizes the mechanisms by which polysaccharide capsules from commensal and pathogenic bacteria in the gut microbiota modulate the innate and adaptive immune systems in the intestine. A deeper understanding of the roles of polysaccharide capsules in microbiota-immune interactions will provide a basis to harness their therapeutic potential to advance human health.


Assuntos
Cápsulas Bacterianas/imunologia , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Polissacarídeos Bacterianos/imunologia , Imunidade Adaptativa , Animais , Bactérias/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Camundongos
8.
J Immunol ; 204(4): 1035-1046, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900343

RESUMO

Bacteria express multiple diverse capsular polysaccharides (CPSs) for protection against environmental and host factors, including the host immune system. Using a mouse TCR transgenic CD4+ T cell, BθOM, that is specific for B. thetaiotaomicron and a complete set of single CPS-expressing B. thetaiotaomicron strains, we ask whether CPSs can modify the immune responses to specific bacterial Ags. Acapsular B. thetaiotaomicron, which lacks all B. thetaiotaomicron CPSs, stimulated BθOM T cells more strongly than wild-type B. thetaiotaomicron Despite similar levels of BθOM Ag expression, many single CPS-expressing B. thetaiotaomicron strains were antistimulatory and weakly activated BθOM T cells, but a few strains were prostimulatory and strongly activated BθOM T cells just as well or better than an acapsular strain. B. thetaiotaomicron strains that expressed an antistimulatory CPS blocked Ag delivery to the immune system, which could be rescued by Fc receptor-dependent Ab opsonization. All single CPS-expressing B. thetaiotaomicron strains stimulated the innate immune system to skew toward M1 macrophages and release inflammatory cytokines in an MyD88-dependent manner, with antistimulatory CPS activating the innate immune system in a weaker manner than prostimulatory CPS. The expression of antistimulatory versus prostimulatory CPSs on outer membrane vesicles also regulated immune responses. Moreover, antistimulatory and prostimulatory single CPS-expressing B. thetaiotaomicron strains regulated the activation of Ag-specific and polyclonal T cells as well as clearance of dominant Ag in vivo. These studies establish that the immune responses to specific bacterial Ags can be modulated by a diverse set of CPSs.


Assuntos
Antígenos de Bactérias/imunologia , Bacteroides thetaiotaomicron/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Polissacarídeos Bacterianos/metabolismo , Animais , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/citologia , Bacteroides thetaiotaomicron/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Homeodomínio/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Polissacarídeos Bacterianos/imunologia , Simbiose/imunologia
9.
Sci Immunol ; 4(32)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737355

RESUMO

T cell responses to symbionts in the intestine drive tolerance or inflammation depending on the genetic background of the host. These symbionts in the gut sense the available nutrients and adapt their metabolic programs to use these nutrients efficiently. Here, we ask whether diet can alter the expression of a bacterial antigen to modulate adaptive immune responses. We generated a CD4+ T cell hybridoma, BθOM, specific for Bacteroides thetaiotaomicron (B. theta). Adoptively transferred transgenic T cells expressing the BθOM TCR proliferated in the colon, colon-draining lymph node, and spleen in B. theta-colonized healthy mice and differentiated into regulatory T cells (Tregs) and effector T cells (Teffs). Depletion of B. theta-specific Tregs resulted in colitis, showing that a single protein expressed by B. theta can drive differentiation of Tregs that self-regulate Teffs to prevent disease. We found that BθOM T cells recognized a peptide derived from a single B. theta protein, BT4295, whose expression is regulated by nutrients, with glucose being a strong catabolite repressor. Mice fed a high-glucose diet had a greatly reduced activation of BθOM T cells in the colon. These studies establish that the immune response to specific bacterial antigens can be modified by changes in the diet by altering antigen expression in the microbe.


Assuntos
Antígenos de Bactérias/metabolismo , Bacteroides thetaiotaomicron/imunologia , Colo/imunologia , Dieta , Linfócitos T Reguladores/imunologia , Transferência Adotiva/métodos , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Diferenciação Celular/imunologia , Colite/imunologia , Colite/prevenção & controle , Meios de Cultura , Escherichia coli/imunologia , Glucose/metabolismo , Hibridomas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nutrientes/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Science ; 360(6385): 204-208, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650672

RESUMO

Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. In this study, we have shown that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. Our work thus provides insight into how the immune system and microbes can coordinately promote enteric viral infection.


Assuntos
Infecções por Caliciviridae/imunologia , Enterócitos/imunologia , Enterócitos/virologia , Microbiota/imunologia , Norovirus/fisiologia , Tropismo Viral/imunologia , Animais , Proliferação de Células , Citocinas/metabolismo , Camundongos , Receptores Imunológicos/metabolismo
11.
J Immunol ; 200(10): 3429-3437, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618523

RESUMO

Intricate processes in the thymus and periphery help curb the development and activation of autoreactive T cells. The subtle signals that govern these processes are an area of great interest, but tuning TCR sensitivity for the purpose of affecting T cell behavior remains technically challenging. Previously, our laboratory described the derivation of two TCR-transgenic CD4 T cell mouse lines, LLO56 and LLO118, which recognize the same cognate Listeria epitope with the same affinity. Despite the similarity of the two TCRs, LLO56 cells respond poorly in a primary infection whereas LLO118 cells respond robustly. Phenotypic examination of both lines revealed a substantial difference in their surface of expression of CD5, which serves as a dependable readout of the self-reactivity of a cell. We hypothesized that the increased interaction with self by the CD5-high LLO56 was mediated through TCR signaling, and was involved in the characteristic weak primary response of LLO56 to infection. To explore this issue, we generated an inducible knock-in mouse expressing the self-sensitizing voltage-gated sodium channel Scn5a. Overexpression of Scn5a in peripheral T cells via the CD4-Cre promoter resulted in increased TCR-proximal signaling. Further, Scn5a-expressing LLO118 cells, after transfer into BL6 recipient mice, displayed an impaired response during infection relative to wild-type LLO118 cells. In this way, we were able to demonstrate that tuning of TCR sensitivity to self can be used to alter in vivo immune responses. Overall, these studies highlight the critical relationship between TCR-self-pMHC interaction and an immune response to infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Animais , Antígenos CD5/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
12.
J Biol Chem ; 293(16): 6022-6038, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29496999

RESUMO

Germline-encoded receptors recognizing common pathogen-associated molecular patterns are a central element of the innate immune system and play an important role in shaping the host response to infection. Many of the innate immune molecules central to these signaling pathways are evolutionarily conserved. LysMD3 is a novel molecule containing a putative peptidoglycan-binding domain that has orthologs in humans, mice, zebrafish, flies, and worms. We found that the lysin motif (LysM) of LysMD3 is likely related to a previously described peptidoglycan-binding LysM found in bacteria. Mouse LysMD3 is a type II integral membrane protein that co-localizes with GM130+ structures, consistent with localization to the Golgi apparatus. We describe here two lines of mLysMD3-deficient mice for in vivo characterization of mLysMD3 function. We found that mLysMD3-deficient mice were born at Mendelian ratios and had no obvious pathological abnormalities. They also exhibited no obvious immune response deficiencies in a number of models of infection and inflammation. mLysMD3-deficient mice exhibited no signs of intestinal dysbiosis by 16S analysis or alterations in intestinal gene expression by RNA sequencing. We conclude that mLysMD3 contains a LysM with cytoplasmic orientation, but we were unable to define a physiological role for the molecule in vivo.


Assuntos
Deleção de Genes , Animais , Autoantígenos/análise , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Sistemas CRISPR-Cas , Feminino , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Masculino , Proteínas de Membrana/análise , Camundongos , Micoses/genética , Micoses/imunologia , Filogenia , Viroses/genética , Viroses/imunologia
13.
Immunity ; 47(5): 803-804, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166579

RESUMO

In this issue of Immunity, Van Braeckel-Budimmir et al. (2017) reveal that the pathogenic response of mice to a Plasmodium berghei infection is dominated by a Vß8.1 T cell response. Mice lacking Vß8.1 T cells fail to mount a pathogenic response, thus showing that the TCR locus can be an Immune response (Ir) gene.


Assuntos
Malária , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T
15.
Cell Rep ; 19(3): 532-544, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423317

RESUMO

The resurgent component of voltage-gated Na+ (Nav) currents, INaR, has been suggested to provide the depolarizing drive for high-frequency firing and to be generated by voltage-dependent Nav channel block (at depolarized potentials) and unblock (at hyperpolarized potentials) by the accessory Navß4 subunit. To test these hypotheses, we examined the effects of the targeted deletion of Scn4b (Navß4) on INaR and on repetitive firing in cerebellar Purkinje neurons. We show here that Scn4b-/- animals have deficits in motor coordination and balance and that firing rates in Scn4b-/- Purkinje neurons are markedly attenuated. Acute, in vivo short hairpin RNA (shRNA)-mediated "knockdown" of Navß4 in adult Purkinje neurons also reduced spontaneous and evoked firing rates. Dynamic clamp-mediated addition of INaR partially rescued firing in Scn4b-/- Purkinje neurons. Voltage-clamp experiments revealed that INaR was reduced (by ∼50%), but not eliminated, in Scn4b-/- Purkinje neurons, revealing that additional mechanisms contribute to generation of INaR.


Assuntos
Potenciais de Ação/fisiologia , Ativação do Canal Iônico , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Células de Purkinje/metabolismo , Sódio/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/deficiência , Envelhecimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Separação Celular , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Marcação de Genes , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo
16.
Sci Rep ; 6: 23326, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987296

RESUMO

CLEC16A is in a locus genetically linked to autoimmune diseases including multiple sclerosis, but the function of this gene in the nervous system is unknown. Here we show that two mouse strains carrying independent Clec16a mutations developed neurodegenerative disease characterized by motor impairments and loss of Purkinje cells. Neurons from Clec16a-mutant mice exhibited increased expression of the autophagy substrate p62, accumulation of abnormal intra-axonal membranous structures bearing the autophagy protein LC3, and abnormal Golgi morphology. Multiple aspects of endocytosis, lysosome and Golgi function were normal in Clec16a-deficient murine embryonic fibroblasts and HeLa cells. However, these cells displayed abnormal bulk autophagy despite unimpaired autophagosome formation. Cultured Clec16a-deficient cells exhibited a striking accumulation of LC3 and LAMP-1 positive autolysosomes containing undigested cytoplasmic contents. Therefore Clec16a, an autophagy protein that is critical for autolysosome function and clearance, is required for Purkinje cell survival.


Assuntos
Lectinas Tipo C/genética , Lisossomos/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Doença dos Neurônios Motores/patologia , Mutação , Células de Purkinje/citologia , Animais , Autofagia , Sobrevivência Celular , Células Cultivadas , Complexo de Golgi/patologia , Células HeLa , Humanos , Lectinas Tipo C/metabolismo , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Doença dos Neurônios Motores/genética
17.
Front Immunol ; 6: 621, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697015

RESUMO

To investigate how CD4(+) T cells function against a bacterial pathogen, we generated a Listeria monocytogenes-specific CD4(+) T cell model. In this system, two TCRtg mouse lines, LLO56 and LLO118, recognize the same immunodominant epitope (LLO190-205) of L. monocytogenes and have identical in vitro responses. However, in vivo LLO56 and LLO118 display vastly different responses during both primary and secondary infection. LLO118 dominates in the primary response and in providing CD8 T cell help. LLO56 predominates in the secondary response. We have also shown that both specific [T cell receptor (TCR)-mediated] and non-specific stimuli (bypassing the TCR) elicit distinct responses from the two transgenics, leading us to conclude that the strength of self-pMHC signaling during development tightly dictates the cell's future response in the periphery. Herein, we review our findings in this transfer system, focusing on the contribution of the immunomodulatory molecule CD5 and the importance of self-interaction in peripheral maintenance of the cell. We also discuss the manner in which individual TCR affinities to foreign and self-pMHC contribute to the outcome of an immune response; our assertion is that there exists a spectrum of possible T cell responses to recognition of cognate antigen during infection, adding immense diversity to the immune system's response to pathogens.

18.
J Immunol ; 195(8): 3557-64, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26336148

RESUMO

We have recently shown that two-dimensional (2D) and force-regulated kinetics of TCR-peptide-bound MHC class I (pMHC-I) interactions predict responses of CD8(+) T cells. To test whether these findings are applicable to CD4(+) T cells, we analyzed the in situ 3.L2 TCR-pMHC-II interactions for a well-characterized panel of altered peptide ligands on the T cell surface using the adhesion frequency assay with a micropipette and the thermal fluctuation and force-clamp assays with a biomembrane force probe. We found that the 2D effective TCR-pMHC-II affinity and off-rate correlate with, but better predict the T cell response than, the corresponding measurements with the surface plasmon resonance in three dimensions. The 2D affinity of the CD4 for MHC-II was very low, approaching the detection limit, making it one to two orders of magnitude lower than the affinity of CD8 for MHC-I. In addition, the signal-dependent cooperation between TCR and coreceptor for pMHC binding previously observed for CD8 was not observed for CD4. Interestingly, force elicited TCR-pMHC-II catch-slip bonds for agonists but slip-only bonds for antagonists, thereby amplifying the power of discrimination between altered peptide ligands. These results show that the force-regulated 2D binding kinetics of the 3.L2 TCR for pMHC-II determine functions of CD4(+) T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética
19.
Cell Host Microbe ; 17(5): 672-80, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25974305

RESUMO

Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.


Assuntos
Antígenos de Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Interações Hospedeiro-Patógeno , Vesículas Secretórias/enzimologia , Vesículas Secretórias/metabolismo , Sulfatases/metabolismo , Animais , Bacteroides/genética , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Deleção de Genes , Genes Bacterianos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA