Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 5869-5877, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561318

RESUMO

Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério/química , Medição da Troca de Deutério/métodos , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Peptídeos/química
2.
EMBO J ; 43(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177311

RESUMO

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Canais de Translocação SEC/química , Proteínas SecA/metabolismo , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Proteico , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Mol Inform ; 43(1): e202300262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833243

RESUMO

The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Bioensaio , Descoberta de Drogas
4.
Open Biol ; 13(8): 230166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643640

RESUMO

Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.


Assuntos
Transporte Proteico , Membrana Celular
5.
Res Sports Med ; 31(3): 228-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34315310

RESUMO

The aims of the current systematic review were to evaluate the current literature surrounding the chronic effect of flywheel training on the physical capacities of soccer players, and to identify areas for future research to establish guidelines for its use.Studies were identified following a search of electronic databases (PubMed and SPORTDiscus) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA).Eleven studies met the inclusion criteria and were included. The methodological quality of the included studies ranged between 10 and 18 with an average score of 15 points using the PEDro scale. The training duration ranged from 6 weeks to 27 weeks, with volume ranging from 1 to 6 sets and 6 to 10 repetitions, and frequency from 1 to 2 times a week. This systematic review reported that a diverse range of flywheel training interventions can effectively improve strength, power, jump, and changes of direction in male soccer players of varying levels.Flywheel training interventions improve the physical capacities of soccer players of varying levels. Nonetheless, the current literature suggests contrasting evidence regarding flywheel training induced changes in sprint speed and acceleration capacity of soccer players.


Assuntos
Desempenho Atlético , Futebol , Humanos , Masculino , Força Muscular , Aceleração
6.
J Comput Chem ; 43(29): 1942-1963, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36073674

RESUMO

As a complement to virtual screening, de novo design of small molecules is an alternative approach for identifying potential drug candidates. Here, we present a new 3D genetic algorithm to evolve molecules through breeding, mutation, fitness pressure, and selection. The method, termed DOCK_GA, builds upon and leverages powerful sampling, scoring, and searching routines previously implemented into DOCK6. Three primary experiments were used during development: Single-molecule evolution evaluated three selection methods (elitism, tournament, and roulette), in four clinically relevant systems, in terms of mutation type and crossover success, chemical properties, ensemble diversity, and fitness convergence, among others. Large scale benchmarking assessed performance across 651 different protein-ligand systems. Ensemble-based evolution demonstrated using multiple inhibitors simultaneously to seed growth in a SARS-CoV-2 target. Key takeaways include: (1) The algorithm is robust as demonstrated by the successful evolution of molecules across a large diverse dataset. (2) Users have flexibility with regards to parent input, selection method, fitness function, and molecular descriptors. (3) The program is straightforward to run and only requires a single executable and input file at run-time. (4) The elitism selection method yields more tightly clustered molecules in terms of 2D/3D similarity, with more favorable fitness, followed by tournament and roulette.


Assuntos
COVID-19 , Desenho de Fármacos , Algoritmos , Evolução Molecular , Humanos , Ligantes , SARS-CoV-2
7.
Elife ; 112022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674314

RESUMO

Nearly all mitochondrial proteins need to be targeted for import from the cytosol. For the majority, the first port of call is the translocase of the outer membrane (TOM complex), followed by a procession of alternative molecular machines, conducting transport to their final destination. The pre-sequence translocase of the inner membrane (TIM23-complex) imports proteins with cleavable pre-sequences. Progress in understanding these transport mechanisms has been hampered by the poor sensitivity and time resolution of import assays. However, with the development of an assay based on split NanoLuc luciferase, we can now explore this process in greater detail. Here, we apply this new methodology to understand how ∆ψ and ATP hydrolysis, the two main driving forces for import into the matrix, contribute to the transport of pre-sequence-containing precursors (PCPs) with varying properties. Notably, we found that two major rate-limiting steps define PCP import time: passage of PCP across the outer membrane and initiation of inner membrane transport by the pre-sequence - the rates of which are influenced by PCP size and net charge. The apparent distinction between transport through the two membranes (passage through TOM is substantially complete before PCP-TIM engagement) is in contrast with the current view that import occurs through TOM and TIM in a single continuous step. Our results also indicate that PCPs spend very little time in the TIM23 channel - presumably rapid success or failure of import is critical for maintenance of mitochondrial fitness.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Luciferases , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486093

RESUMO

Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.


Assuntos
Proteínas de Escherichia coli , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo
9.
J Chem Inf Model ; 61(9): 4190-4199, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34397210

RESUMO

Signaling bias is a feature of many G protein-coupled receptor (GPCR) targeting drugs with potential clinical implications. Whether it is therapeutically advantageous for a drug to be G protein biased or ß-arrestin biased depends on the context of the signaling pathway. Here, we explored GPCR ligands that exhibit biased signaling to gain insights into scaffolds and pharmacophores that lead to bias. More specifically, we considered BiasDB, a database containing information about GPCR biased ligands, and focused our analysis on ligands which show either a G protein or ß-arrestin bias. Five different machine learning models were trained on these ligands using 15 different sets of features. Molecular fragments which were important for training the models were analyzed. Two of these fragments (number of secondary amines and number of aromatic amines) were more prevalent in ß-arrestin biased ligands. After training a random forest model on HierS scaffolds, we found five scaffolds, which demonstrated G protein or ß-arrestin bias. We also conducted t-SNE clustering, observing correspondence between unsupervised and supervised machine learning methods. To increase the applicability of our work, we developed a web implementation of our models, which can predict bias based on user-provided SMILES, drug names, or PubChem CID. Our web implementation is available at: drugdiscovery.utep.edu/biasnet.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
10.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531386

RESUMO

The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W ) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.IMPORTANCE Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. Mutations in genes coding for members of the Sec translocon render cells resistant to these CDI toxins by blocking their movement into and through target cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Canais de Translocação SEC/genética , Inibição de Contato , Mutação , Transporte Proteico , Canais de Translocação SEC/fisiologia
11.
J Strength Cond Res ; 35(9): 2616-2621, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31232831

RESUMO

ABSTRACT: Beato, M, De Keijzer, KL, Leskauskas, Z, Allen, WJ, Dello Iacono, A, and McErlain-Naylor, SA. Effect of postactivation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance. J Strength Cond Res 35(9): 2616-2621, 2021-This study aimed to evaluate the postactivation potentiation (PAP) effects of an eccentric overload (EOL) exercise on vertical and horizontal jumps and change of direction (COD) performance. Twelve healthy physically active male subjects were involved in a crossover study. The subjects performed 3 sets of 6 repetitions of EOL half squats for maximal power using a flywheel ergometer. Postactivation potentiation using an EOL exercise was compared between a medium (M-EOL) vs. high inertia (H-EOL) experimental condition. Long jump (LJ) was recorded at 30 seconds, 3, and 6 minutes after both EOL exercises and compared with baseline values (control). The same procedure was used to assess countermovement jump (CMJ) height and peak power and 5-m COD test (COD-5m). A fully Bayesian statistical approach to provide probabilistic statements was used in this study. Long jump performance reported improvements after M-EOL and H-EOL exercise (Bayes factor [BF10] = 32.7, strong; BF10 = 9.2, moderate), respectively. Countermovement jump height (BF10 = 135.6, extreme; BF10 > 200, extreme), CMJ peak power (BF10 > 200, extreme; BF10 = 56.1, very strong), and COD-5m (BF10 = 55.7, very strong; BF10 = 16.4, strong) reported improvements after M-EOL and H-EOL exercise, respectively. Between analysis did not report meaningful differences in performance between M-EOL and H-EOL exercises. The present outcomes highlight that PAP using an EOL (M-EOL and H-EOL) improves LJ, CMJ height, CMJ peak power, and COD-5m in male athletes. The optimal time window for the PAP effect was found for both EOL conditions from 3 to 6 minutes. However, M-EOL and H-EOL produce similar PAP effect on LJ, CMJ, and COD-5m tasks.


Assuntos
Desempenho Atlético , Força Muscular , Teorema de Bayes , Estudos Cross-Over , Exercício Físico , Humanos , Masculino
12.
Proc Natl Acad Sci U S A ; 117(50): 31808-31816, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257538

RESUMO

The universally conserved Sec system is the primary method cells utilize to transport proteins across membranes. Until recently, measuring the activity-a prerequisite for understanding how biological systems work-has been limited to discontinuous protein transport assays with poor time resolution or reported by large, nonnatural tags that perturb the process. The development of an assay based on a split superbright luciferase (NanoLuc) changed this. Here, we exploit this technology to unpick the steps that constitute posttranslational protein transport in bacteria. Under the conditions deployed, the transport of a model preprotein substrate (proSpy) occurs at 200 amino acids (aa) per minute, with SecA able to dissociate and rebind during transport. Prior to that, there is no evidence for a distinct, rate-limiting initiation event. Kinetic modeling suggests that SecA-driven transport activity is best described by a series of large (∼30 aa) steps, each coupled to hundreds of ATP hydrolysis events. The features we describe are consistent with a nondeterministic motor mechanism, such as a Brownian ratchet.


Assuntos
Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Proteínas SecA/metabolismo , Bactérias/citologia , Bioensaio/métodos , Hidrólise , Cinética , Bicamadas Lipídicas/metabolismo , Luciferases/química
13.
Elife ; 92020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146611

RESUMO

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent - hydrophobic ß-barrel Outer-Membrane Proteins (OMPs) - are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the ß-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) - an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane 'insertase' YidC - contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Modelos Moleculares , Conformação Proteica , Transporte Proteico
14.
J Comput Chem ; 41(31): 2634-2640, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32930440

RESUMO

Designing peptide sequences that self-assemble into well-defined nanostructures can open a new venue for the development of novel drug carriers and molecular contrast agents. Current approaches are often based on a linear block-design of amphiphilic peptides where a hydrophilic peptide chain is terminated by a hydrophobic tail. Here, a new template for a self-assembling tetrapeptide (YXKX, Y = tyrosine, X = alkylated tyrosine, K = lysine) is proposed with two distinct sides relative to the peptide's backbone: alkylated hydrophobic residues on one side and hydrophilic residues on the other side. Using all-atom molecular dynamics simulations, the self-assembly pathway of the tetrapeptide is analyzed for two different concentrations. At both concentrations, tetrapeptides self-assembled into a nanosphere structure. The alkylated tyrosines initialize the self-assembly process via a strong hydrophobic effect and to reduce exposure to the aqueous solvent, they formed a hydrophobic core. The hydrophilic residues occupied the surface of the self-assembled nanosphere. Ordered arrangement of tetrapeptides within the nanosphere with the backbone hydrogen bonding led to a beta sheet formation. Alkyl chain length constrained the size and shape of the nanosphere. This study provides foundation for further exploration of self-assembling structures that are based on peptides with hydrophobic and hydrophilic moieties located on the opposite sides of a peptide backbone.


Assuntos
Oligopeptídeos/química , Alquilação , Sequência de Aminoácidos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoestruturas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tirosina/química , Água/química
15.
Elife ; 92020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32840481

RESUMO

In order to enter a cell, an ammonium ion must first dissociate to form an ammonia molecule and a hydrogen ion (a proton), which then pass through the cell membrane separately and recombine inside.


Assuntos
Compostos de Amônio , Nitrosomonas , Amônia , Transporte de Íons , Oxirredução
16.
Mult Scler ; 26(10): 1217-1226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31190607

RESUMO

OBJECTIVE: To investigate the performance of deep learning (DL) based on fully convolutional neural network (FCNN) in segmenting brain tissues in a large cohort of multiple sclerosis (MS) patients. METHODS: We developed a FCNN model to segment brain tissues, including T2-hyperintense MS lesions. The training, validation, and testing of FCNN were based on ~1000 magnetic resonance imaging (MRI) datasets acquired on relapsing-remitting MS patients, as a part of a phase 3 randomized clinical trial. Multimodal MRI data (dual-echo, FLAIR, and T1-weighted images) served as input to the network. Expert validated segmentation was used as the target for training the FCNN. We cross-validated our results using the leave-one-center-out approach. RESULTS: We observed a high average (95% confidence limits) Dice similarity coefficient for all the segmented tissues: 0.95 (0.92-0.98) for white matter, 0.96 (0.93-0.98) for gray matter, 0.99 (0.98-0.99) for cerebrospinal fluid, and 0.82 (0.63-1.0) for T2 lesions. High correlations between the DL segmented tissue volumes and ground truth were observed (R2 > 0.92 for all tissues). The cross validation showed consistent results across the centers for all tissues. CONCLUSION: The results from this large-scale study suggest that deep FCNN can automatically segment MS brain tissues, including lesions, with high accuracy.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Redes Neurais de Computação
17.
Trends Biochem Sci ; 44(6): 481-483, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962027

RESUMO

Although it has been studied for 30 years, the mechanism by which secretory proteins are transported post-translationally into the endoplasmic reticulum (ER) has not yet been fully resolved. Recently published structures (Itskanov and Park, Science 2019;363:84-87; Wu, X. et al. Nature 2019;566:136-139) of the heptameric secretory (Sec) complex which mediates post-translational import into the yeast ER shed new light on the process.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Transporte Proteico , Canais de Translocação SEC , Saccharomyces cerevisiae
18.
J Mol Biol ; 431(8): 1689-1699, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878481

RESUMO

Protein translocation is a fundamental process in biology. Major gaps in our understanding of this process arise due the poor sensitivity, low time resolution and irreproducibility of translocation assays. To address this, we applied NanoLuc split-luciferase to produce a new strategy for measuring protein transport. The system reduces the timescale of data collection from days to minutes and allows for continuous acquisition with a time resolution in the order of seconds, yielding kinetics parameters suitable for mechanistic elucidation and mathematical fitting. To demonstrate its versatility, we implemented and validated the assay in vitro and in vivo for the bacterial Sec system and the mitochondrial protein import apparatus. Overall, this technology represents a major step forward, providing a powerful new tool for fundamental mechanistic enquiry of protein translocation and for inhibitor (drug) screening, with an intensity and rigor unattainable through classical methods.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Luciferases/metabolismo , Substâncias Luminescentes/metabolismo , Medições Luminescentes/métodos , Transporte Proteico
19.
Elife ; 82019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601115

RESUMO

Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dobramento de Proteína , Canais de Translocação SEC/metabolismo , Proteínas SecA/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Precursores de Proteínas/metabolismo , Transporte Proteico , Canais de Translocação SEC/química , Proteínas SecA/química
20.
Int J Hyperthermia ; 35(1): 559-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303437

RESUMO

OBJECTIVE: A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS: Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS: Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION: Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.


Assuntos
Febre/fisiopatologia , Simulação de Dinâmica Molecular , Pressão Osmótica/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...