Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 33(10): 1306-15, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23474764

RESUMO

Protein kinase C δ (PKCδ) regulates apoptosis in the mammary gland, however, the functional contribution of PKCδ to the development or progression of breast cancer has yet to be determined. Meta-analysis of ErbB2-positive breast cancers shows increased PKCδ expression, and a negative correlation between PKCδ expression and prognosis. Here, we present in-vivo evidence that PKCδ is essential for the development of mammary gland tumors in a ErbB2-overexpressing transgenic mouse model, and in-vitro evidence that PKCδ is required for proliferative signaling downstream of the ErbB2 receptor. Mouse mammary tumor virus (MMTV)-ErbB2 mice lacking PKCδ (δKO) have increased tumor latency compared with MMTV-ErbB2 wild-type (δWT) mice, and the tumors show a dramatic decrease in Ki-67 staining. To explore the relationship between PKCδ and ErbB2-driven proliferation more directly, we used MCF-10A cells engineered to express a synthetic ligand-inducible form of the ErbB2 receptor. Depletion of PKCδ with short hairpin RNA inhibited ligand-induced growth in both two-dimensional (2D) (plastic) and three-dimensional (3D) (Matrigel) culture, and correlated with decreased phosphorylation of the ErbB2 receptor and reduced activation of Src and MAPK/ERK pathways. Similarly, in human breast cancer cell lines in which ErbB2 is overexpressed, depletion of PKCδ suppresses proliferation, Src and ERK activation. PKCδ appears to drive proliferation through the formation of an active ErbB2/PKCδ/Src signaling complex, as depletion of PKCδ disrupts association of Src with the ErbB2 receptor. Taken together, our studies present the first evidence that PKCδ is a critical regulator of ErbB2-mediated tumorigenesis, and suggest further investigation of PKCδ as a target in ErbB2-positive breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , Carcinogênese/metabolismo , Neoplasias Mamárias Experimentais/enzimologia , Proteína Quinase C-delta/fisiologia , Receptor ErbB-2/fisiologia , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Prognóstico , Transdução de Sinais
2.
Cell Death Dis ; 1: e17, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21364618

RESUMO

As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) -/- mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ -/- mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ -/- mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ -/- mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ -/- mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo.


Assuntos
Apoptose , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteína Quinase C-delta/fisiologia , Animais , Caspase 3/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Timo/metabolismo , Timo/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...