Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383758

RESUMO

AIMS: Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS: In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 µg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS: The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Nanopartículas Metálicas , Humanos , Meropeném/farmacologia , Prata/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
2.
Braz J Microbiol ; 54(4): 2641-2650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676406

RESUMO

Multidrug-resistant (MDR) bacteria are one problem in health since the therapeutic alternative are reduced. For this, the application of nanotechnology through functionalized nanoparticles, like a biogenic silver nanoparticle (Bio-AgNP), obtained by biological synthesis, emerges as a possible alternative against the MDR bacteria. This study aimed to evaluate the antibacterial and antibiofilm activity of Bio-AgNP obtained for biological synthesis by Fusarium oxysporum strain 551 against methicillin-resistant Staphylococcus aureus (MRSA) and MDR coagulase-negative Staphylococcus (CoNS) isolates. Bio-AgNP has activity against S. aureus ATCC 25904, Staphylococcus epidermidis ATCC 35984, and MDR isolates, with minimal inhibitory concentration (MIC) ranging from 3.75 to 15 µg.mL-1 and minimal bactericidal concentration (MBC) from 7.5 to 30 µg.mL-1. In the membrane leakage assay, it was observed that all concentrations tested led to proteins release from the cellular content dose-dependently, where the highest concentrations led to higher protein in the supernatant. The 2×MIC of Bio-AgNP killed ATCC 35984 after 6h of treatment, and ATCC 25904 and S. aureus (SA3) strains after 24h of treatment. The 4×MIC was bactericidal in 6h of treatment for all strains in the study. The biofilm of MDR isolates was inhibited in 80.94 to 100% and eradicated in 60 to 94%. The confocal laser scanning microscopy (CLSM) analysis demonstrated similar results to the antibiofilm assays. The Bio-AgNP has antibacterial and antibiofilm activity and can be a promising therapeutic alternative against MDR bacteria.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Prata/farmacologia , Coagulase , Resistência a Meticilina , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
Braz J Microbiol ; 54(4): 2587-2595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656404

RESUMO

To find novel antibiotic drugs, six 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H derivatives named 1b, 1d (pyrazoles), 2a, 2b, 2c, and 2d (thiazoles) were evaluated in silico and in vitro. The in silico analyses were based on ADME pharmacokinetic parameters (absorption, distribution, metabolism, and excretion). The in vitro antibacterial activity was evaluated in Gram-positive and Gram-negative species (Staphylococcus aureus ATCC® 25904, Staphylococcus epidermidis ATCC® 35984, Klebsiella pneumoniae ATCC® 700603, and Acinetobacter baumannii ATCC® 19606), by determination of minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), kinetics curve, and antibiofilm assays. As results, the azoles have activity against the Gram-negative species K. pneumoniae ATCC® 700603 and A. baumannii ATCC® 19606. No antibacterial activity was observed for the Gram-positive bacteria evaluated. Thus, the azoles were evaluated against clinical isolates of K. pneumoniae carbapenemase (KPC) and A. baumannii multidrug-resistant (Ab-MDR). All azoles have antibacterial activity against Ab-MDR isolates (Gram-negative) with MIC values between 512 µg/mL and 1,024 µg/mL. Against KPC isolates the azoles 1b, 1d, and 2d present antibacterial activity (MIC = 1,024 µg/mL). In the kinetics curve assay, the 1b and 1d pyrazoles reduced significantly viable cells of Ab-MDR isolates and additionally inhibited 86.6 to 95.8% of the biofilm formation. The in silico results indicate high possibility to permeate the blood-brain barrier (2b) and was predict human gastrointestinal absorption (all evaluated azoles). Considering that the research and development of new antibiotics is a priority for drug-resistant pathogens, our study revealed the antibacterial and antibiofilm activity of novel azoles against K. pneumoniae and A. baumannii pathogens.


Assuntos
Antibacterianos , Tiazóis , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pirazóis/farmacologia , Biofilmes
4.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688766

RESUMO

The Staphylococcus bacteria cause several infections, S. aureus is the major species, expressing different virulence factors. Therefore, coagulase-negative Staphylococcus (CoNS) are nosocomial pathogens, mainly associated with biofilm formation in invasive medical devices. Methicillin-resistant S. aureus (MRSA) and multidrug resistant (MDR) CoNS are widely distributed in the hospital environment, leading to infections that are difficult to treat. Thus, nanoparticles (NPs) are studied as an alternative in the control of these pathogens. Silver nanoparticles (AgNPs) stand out due to their different biological properties, broad-spectrum antibacterial activity, low toxicity, and use in combination with other drugs. Several studies with AgNPs evaluated in-vitro against S. aureus and MRSA validated the spectrum of action of the NPs. However, few studies attempted to explore the response of the CoNS, mainly in vivo studies. Research that explored the in vivo application of AgNPs against these bacteria helped to understand and better elucidate their activity on the skin through different biological models. Furthermore, the application of NPs is a viable alternative for controlling these bacteria, including MDR bacteria, in cases of skin infections by avoiding worsening the clinical condition and favoring tissue regeneration of the injured area.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Staphylococcus , Staphylococcus aureus , Prata , Antibacterianos , Testes de Sensibilidade Microbiana
5.
J Appl Microbiol ; 132(2): 1036-1047, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34496109

RESUMO

AIMS: Carbapenem-resistant Acinetobacter baumannii represents a public health problem, and the search for new antibacterial drugs has become a priority. Here, we investigate the antibacterial activity of biogenic silver nanoparticles (Bio-AgNPs) synthesized by Fusarium oxysporum, used alone or in combination with polymyxin B against carbapenem-resistant A. baumannii. METHODS AND RESULTS: In this study, ATCC® 19606™ strain and four carbapenem-resistant A. baumannii strains were used. The antibacterial activity of Bio-AgNPs and its synergism with polymyxin B were determined using broth microdilution, checkboard methods and time-kill assays. The integrity of the bacterial cell membrane was monitored by protein leakage assay. In addition, the cytotoxicity in the VERO mammalian cell line was also evaluated, and the selectivity index was calculated. Bio-AgNPs have an antibacterial activity with MIC and MBC ranging from 0.460 to 1.870 µg/ml. The combination of polymyxin B and Bio-AgNPs presents synergy against four of the five strains tested and additivity against one strain in the checkerboard assay. Considering the time of cell death, Bio-AgNPs killed all carbapenem-resistant isolates and ATCC® 19606™ within 1 h. When combined, Bio-AgNPs presented 16-fold reduction of the polymyxin B MIC and showed a decrease in terms of viable A. baumannii cells in 4 h of treatment, with synergic and additive effects. Protein leakage was observed with increasing concentrations for Bio-AgNPs treatments. Additionally, Bio-AgNP and polymyxin B showed dose-dependent cytotoxicity against mammalian VERO cells and combined the cytotoxicity which was significantly reduced and presented a greater pharmacological safety. CONCLUSIONS: The results presented here indicate that Bio-AgNPs in combination with polymyxin B could represent a good alternative in the treatment of carbapenem-resistant A. baumannii. SIGNIFICANCE AND IMPACT OF STUDY: This study demonstrates the synergic effect between Bio-AgNPs and polymyxin B on carbapenem-resistant A. baumannii strains.


Assuntos
Acinetobacter baumannii , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Carbapenêmicos , Chlorocebus aethiops , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Prata/farmacologia , Células Vero
6.
Mol Biol Rep ; 47(12): 9615-9625, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190200

RESUMO

Antimicrobial resistance is increasing around the world and the search for effective treatment options, such as new antibiotics and combination therapy is urgently needed. The present study evaluates oregano essential oil (OEO) antibacterial activities against reference and multidrug-resistant clinical isolates of Acinetobacter baumannii (Ab-MDR). Additionally, the combination of the OEO and polymyxin B was evaluated against Ab-MDR. Ten clinical isolates were characterized at the species level through multiplex polymerase chain reaction (PCR) for the gyrB and blaOXA-51-like genes. The isolates were resistant to at least four different classes of antimicrobial agents, namely, aminoglycosides, cephems, carbapenems, and fluoroquinolones. All isolates were metallo-ß-lactamase (MßL) and carbapenemase producers. The major component of OEO was found to be carvacrol (71.0%) followed by ß-caryophyllene (4.0%), γ-terpinene (4.5%), p-cymene (3,5%), and thymol (3.0%). OEO showed antibacterial effect against all Ab-MDR tested, with minimum inhibitory concentrations (MIC) ranging from 1.75 to 3.50 mg mL-1. Flow cytometry demonstrated that the OEO causes destabilization and rupture of the bacterial cell membrane resulting in apoptosis of A. baumannii cells (p < 0.05). Synergic interaction between OEO and polymyxin B (FICI: 0.18 to 0.37) was observed, using a checkerboard assay. When combined, OEO presented until 16-fold reduction of the polymyxin B MIC. The results presented here indicate that the OEO used alone or in combination with polymyxin B in the treatment of Ab-MDR infections is promising. To the best of our knowledge, this is the first report of OEO and polymyxin B association against Ab-MDR clinical isolates.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Óleos Voláteis/farmacologia , Origanum/química , Polimixina B/farmacologia , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Aminoglicosídeos/farmacologia , Antibacterianos/isolamento & purificação , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Cimenos/isolamento & purificação , Cimenos/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Fluoroquinolonas/farmacologia , Expressão Gênica , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos Policíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...