Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 102(7): 1145-56, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20234367

RESUMO

BACKGROUND: Deregulation of fibroblast growth factor receptor 3 (FGFR3) is involved in several malignancies. Its role in colorectal cancer has not been assessed before. METHODS: Expression of FGFR3 in human colorectal tumour specimens was analysed using splice variant-specific real-time reverse transcriptase PCR assays. To analyse the impact of FGFR3-IIIc expression on tumour cell biology, colon cancer cell models overexpressing wild-type (WT-3b and WT3c) or dominant-negative FGFR3 variants (KD3c and KD3b) were generated by either plasmid transfection or adenoviral transduction. RESULTS: Although FGFR3 mRNA expression is downregulated in colorectal cancer, alterations mainly affected the FGFR3-IIIb splice variant, resulting in an increased IIIc/IIIb ratio predominantly in a subgroup of advanced tumours. Overexpression of WT3c increased proliferation, survival and colony formation in all colon cancer cell models tested, whereas WT3b had little activity. In addition, it conferred sensitivity to autocrine FGF18-mediated growth and migration signals in SW480 cells with low endogenous FGFR3-IIIc expression. Disruption of FGFR3-IIIc-dependent signalling by dominant-negative FGFR3-IIIc or small interfering RNA-mediated FGFR3-IIIc knockdown resulted in inhibition of cell growth and induction of apoptosis, which could not be observed when FGFR3-IIIb was blocked. In addition, KD3c expression blocked colony formation and migration and distinctly attenuated tumour growth in SCID mouse xenograft models. CONCLUSION: Our data show that FGFR3-IIIc exerts oncogenic functions by mediating FGF18 effects in colorectal cancer and may constitute a promising new target for therapeutic interventions.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
2.
Oncogene ; 27(30): 4180-90, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18362893

RESUMO

Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.


Assuntos
Comunicação Autócrina/fisiologia , Neoplasias Encefálicas/genética , Fator 5 de Crescimento de Fibroblastos/fisiologia , Glioblastoma/genética , Oncogenes , Comunicação Parácrina/fisiologia , Comunicação Autócrina/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Progressão da Doença , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/farmacologia , Genes Dominantes/fisiologia , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Oncogenes/fisiologia , Comunicação Parácrina/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...