Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 163: 132-146, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31078082

RESUMO

The evolution of phytochemical diversity and biosynthetic pathways in plants can be evaluated from a phylogenetic and environmental perspective. Pilocarpus Vahl (Rutaceae), an economically important medicinal plant in the family Rutaceae, has a great diversity of imidazole alkaloids and coumarins. In this study, we used phylogenetic comparative methods to determine whether there is a phylogenetic signal for chemical traits across the genus Pilocarpus; this included ancestral reconstructions of continuous and discrete chemical traits. Bioclimatic variables found to be associated with the distribution of this genus were used to perform OLS regressions between chemical traits and bioclimatic variables. Next, these regression models were evaluated to test whether bioclimatic traits could significantly predict compound concentrations. Our study found that in terms of compound concentration, variation is most significantly associated with adaptive environmental convergence rather than phylogenetic relationships. The best predictive model of chemical traits was the OLS regression that modeled the relationship between coumarin and precipitation in the coldest quarter. However, we also found one chemical trait was dependent on phylogenetic history and bioclimatic factors. These findings emphasize that consideration of both environmental and phylogenetic factors is essential to tease out the intricate processes in the evolution of chemical diversity in plants. These methods can benefit fields such as conservation management, ecology, and evolutionary biology.


Assuntos
Compostos Fitoquímicos/química , Rutaceae/química , Filogenia , Compostos Fitoquímicos/biossíntese , Compostos Fitoquímicos/genética , Rutaceae/genética , Rutaceae/metabolismo
2.
Front Plant Sci ; 10: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894869

RESUMO

Studies examining the diversity of plant specialized metabolites suggest that biotic and abiotic pressures greatly influence the qualitative and quantitative diversity found in a species. Large geographic distributions expose a species to a great variety of environmental pressures, thus providing an enormous opportunity for expression of environmental plasticity. Pilocarpus, a neotropical genus of Rutaceae, is rich in alkaloids, terpenoids, and coumarins, and is the only commercial source of the alkaloid pilocarpine for the treatment of glaucoma. Overharvesting of species in this genus for pilocarpine, has threatened natural populations of the species. The aim of this research was to understand how adaptation to environmental variation shapes the metabolome in multiple populations of the widespread species Pilocarpus pennatifolius. LCMS data from alkaloid and phenolic extracts of leaf tissue were analyzed with environmental predictors using unimodal unconstrained and constrained ordination methods for an untargeted metabolomics analysis. PLS-DA was used to further confirm the chemoecotypes of each site. The most important variables contributing to the alkaloid variation between the sites: mean temperature of wettest quarter, as well as the soil content of phosphorus, magnesium, and base saturation (V%). The most important contributing to the phenolic variation between the sites: mean temperature of the wettest quarter, temperature seasonality, calcium and soil electrical conductivity. This research will have broad implications in a variety of areas including biocontrol for pests, environmental and ecological plant physiology, and strategies for species conservation maximizing phytochemical diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...