Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(16): 11541-11556, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601704

RESUMO

The diminishing supply of fossil fuels, their detrimental environmental effects, and the challenges associated with the disposal of agro-waste necessitated the development of renewable and sustainable alternative energy sources. This study aims at developing bio-briquettes from Amaranthus hybridus waste, with cassava starch as a binder; both are agricultural wastes. Before and following delignification, alkali-treated Amaranthus hybridus (TAHB) and untreated (UAHB) briquettes were evaluated in terms of combustion and physicochemical parameters. FTIR and SEM were utilized to monitor the morphological transformation and bond restructuring of TAHB and UAHB samples. EDXRF was used to assess the Potential Toxic Elements (PTEs) composition and environmental friendliness of both TAHB and UAHB. Furthermore, Adaptive Neuro-Fuzzy Inference System (ANFIS) and fuzzy c-means (FCM) clustering machine learning models were used to optimize the production process and predict the efficiency of bio-briquettes. After delignification, a lower lignin value of 11.47 ± 0.00% in TAHB compared to 12.31 ± 0.01% (UAHB) was recorded. Calorific values of 10.43 ± 0.25 MJ kg-1 (UAHB) and 12.53 ± 0.30 MJ kg-1 (TAHB) were recorded at p < 0.05. EDXRF results showed a difference of 0.016% in Pb concentration in both samples. SEM reveals morphological restructuring, while FTIR reveals a 4 cm-1 difference in the C-O stretch. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) gave values of 0.0249, 2.104, and, 0.0249; (MAE, training) and 0.0223 (MAE, testing) respectively. This shows that the model's predictions match the reality, thereby suggesting a strong agreement between the predicted and experimental data. The finding of this study shows that delignification-disruption improved the solid biofuel's ability to burn cleanly and sustainably.

2.
Environ Sci Pollut Res Int ; 30(16): 48036-48047, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36749516

RESUMO

This study involved preparation and modification of Saccharum officinarium as adsorbent used for the removal of chromium (VI) ions in a batch process. The adsorbent was modified with oxalic acid for improved performance of the adsorbent by increasing the surface area of the adsorbent. Surface morphology of the adsorbents was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), while Fourier transform infrared (FT-IR) analysis was carried out before and after the adsorption of Cr (VI) ions to determine the participating functional group in the processes. The optimum adsorption was attained at pH 2 and contact time of 180 min with efficiency of adsorption of 56.7 and 92.6% onto RSO and MSO, respectively. The adsorption capacity increases with increase in initial metal ion concentration of the sorption mixture. The isotherms studies indicate that the experimental data were best fitted to Freundlich, Langmuir, and Sips models with R2 = 0.999 for adsorption of Cr (VI) ions onto raw S. officinarium (RSO) and modified S. officinarium (MSO). The maximum adsorption capacity obtained were 227.27 and 243.90 mg*g-1 while the adsorption energy obtained from D-R were found to be 3.460 and 6.325 kJ*mol-1 onto RSO and MSO, respectively. This revealed that the physiosorption process was favored in interaction of Cr (VI) ions onto both adsorbents. Separation factors obtained showed that the process is favored with increase in initial concentration of the adsorbate. Thermodynamic parameter values obtained showed that the sorption of Cr (VI) ions onto RSO and MSO is feasible, spontaneous, and endothermic in nature. The positive value of ΔS° indicates increase in disorderliness of the adsorption process. Kinetic data achieved at different initial concentrations of adsorbate have been analyzed, and the mechanism of the reaction was also studied by intra-particle and Bangham kinetic model. Each of the models was tested with R2 ˃ 0.9, where pseudo-second-order is the best-fitted model and Bangham mechanism only fitted with adsorption of Cr (VI) ions onto RSO. The reusability potential of RSO and MSO contributes to the economic values and reliability of the adsorbents for removal of Cr (VI) ions from aqueous solution.


Assuntos
Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Termodinâmica , Água/química , Cromo/química , Cinética , Íons
3.
Sci Total Environ ; 868: 161547, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36642279

RESUMO

Carbon dioxide (CO2) is the most important greenhouse gas (GHG), accounting for 76% of all GHG emissions. The atmospheric CO2 concentration has increased from 280 ppm in the pre-industrial era to about 418 ppm, and is projected to reach 570 ppm by the end of the 21st century. In addition to reducing CO2 emissions from anthropogenic activities, strategies to adequately address climate change must include CO2 capture. To promote circular economy, captured CO2 should be converted to value-added materials such as fuels and other chemical feedstock. Due to their tunable chemistry (which allows them to be selective) and high surface area (which allows them to be efficient), engineered nanomaterials are promising for CO2 capturing and/or transformation. This work critically reviewed the application of nanomaterials for the transformation of CO2 into various fuels, like formic acid, carbon monoxide, methanol, and ethanol. We discussed the literature on the use of metal-based nanomaterials, inorganic/organic nanocomposites, as well as other routes suitable for CO2 conversion such as the electrochemical, non-thermal plasma, and hydrogenation routes. The characteristics, steps, mechanisms, and challenges associated with the different transformation technologies were also discussed. Finally, we presented a section on the outlook of the field, which includes recommendations for how to continue to advance the use of nanotechnology for conversion of CO2 to fuels.

4.
ACS Appl Bio Mater ; 5(11): 5240-5254, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270024

RESUMO

Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Escherichia coli , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Antibacterianos/farmacologia , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...