Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 110(1): 47-58, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22076635

RESUMO

RATIONALE: A growing body of evidence supports the hypothesis that the Wnt/planar cell polarity (PCP) pathway regulates endothelial cell proliferation and angiogenesis, but the components that mediate this regulation remain elusive. OBJECTIVE: We investigated the involvement of one of the receptors, Frizzled4 (Fzd4), in this process because its role has been implicated in retinal vascular development. METHODS AND RESULTS: We found that loss of fzd4 function in mice results in a striking reduction and impairment of the distal small artery network in the heart and kidney. We report that loss of fzd4 decreases vascular cell proliferation and migration and decreases the ability of the endothelial cells to form tubes. We show that fzd4 deletion induces defects in the expression level of stable acetylated tubulin and in Golgi organization during migration. Deletion of fzd4 favors Wnt noncanonical AP1-dependent signaling, indicating that Fzd4 plays a pivotal role favoring PCP signaling. Our data further demonstrate that Fzd4 is predominantly localized on the top of the plasma membrane, where it preferentially induces Dvl3 relocalization to promote its activation and α-tubulin recruitment during migration. In a pathological mouse angiogenic model, deletion of fzd4 impairs the angiogenic response and leads to the formation of a disorganized arterial network. CONCLUSIONS: These results suggest that Fzd4 is a major receptor involved in arterial formation and organization through a Wnt/PCP pathway.


Assuntos
Artérias/citologia , Polaridade Celular/fisiologia , Proliferação de Células , Receptores Frizzled/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Artérias/fisiologia , Arteríolas/citologia , Arteríolas/fisiologia , Movimento Celular/fisiologia , Proteínas Desgrenhadas , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Receptores Frizzled/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microtúbulos/fisiologia , Modelos Animais , Fosfoproteínas/fisiologia
2.
Arterioscler Thromb Vasc Biol ; 31(11): e80-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21836067

RESUMO

OBJECTIVE: The inflammatory response after myocardial infarction plays a crucial role in the healing process. Lately, there is accumulating evidence that the Wnt/Frizzled pathway may play a distinct role in inflammation. We have shown that secreted frizzled-related protein-1 (sFRP-1) overexpression reduced postinfarction scar size, and we noticed a decrease in neutrophil infiltration in the ischemic tissue. We aimed to further elucidate the role of sFRP-1 in the postischemic inflammatory process. METHODS AND RESULTS: We found that in vitro, sFRP-1 was able to block leukocyte activation and cytokine production. We transplanted bone marrow cells (BMCs) from transgenic mice overexpressing sFRP-1 into wild-type recipient mice and compared myocardial healing with that of mice transplanted with wild-type BMCs. These results were compared with those obtained in transgenic mice overexpressing sFRP-1 specifically in endothelial cells or in cardiomyocytes to better understand the spatiotemporal mechanism of the sFRP-1 effect. Our findings indicate that when overexpressed in the BMCs, but not in endothelial cells or cardiomyocytes, sFRP-1 was able to reduce neutrophil infiltration after ischemia, by switching the balance of pro- and antiinflammatory cytokine expression, leading to a reduction in scar formation and better cardiac hemodynamic parameters. CONCLUSION: sFRP-1 impaired the loop of cytokine amplification and decreased neutrophil activation and recruitment into the scar, without altering the neutrophil properties. These data support the notion that sFRP-1 may be a novel antiinflammatory factor protecting the heart from damage after myocardial infarction.


Assuntos
Cicatriz/etiologia , Cicatriz/metabolismo , Inflamação/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Proteínas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Cicatriz/patologia , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Modelos Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Proteínas/farmacologia
3.
Circ Heart Fail ; 3(3): 431-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200330

RESUMO

BACKGROUND: Inflammatory processes play a critical role in myocarditis, dilated cardiomyopathy, and heart failure. The expression of the inflammatory chemokine osteopontin (OPN) is dramatically increased in cardiomyocytes and inflammatory cells during myocarditis and heart failure in human and animals. However, its role in the development of heart diseases is not known. METHODS AND RESULTS: To understand whether OPN is involved in cardiomyopathies, we generated a transgenic mouse (MHC-OPN) that specifically overexpresses OPN in cardiomyocytes with cardiac-specific promoter-directed OPN expression. Young MHC-OPN mice were phenotypically indistinguishable from their control littermates, but most of them died prematurely with a half-life of 12 weeks of age. Electrocardiography revealed conduction defects. Echocardiography showed left ventricular dilation and systolic dysfunction. Histological analysis revealed cardiomyocyte loss, severe fibrosis, and inflammatory cell infiltration. Most of these inflammatory cells were activated T cells with Th1 polarization and cytotoxic activity. Autoantibodies against OPN, cardiac myosin, or troponin I, were not found in the serum of MHC-OPN mice. CONCLUSIONS: These data show that OPN expression in the heart induces in vivo T-cell recruitment and activation leading to chronic myocarditis, the consequence of which is myocyte destruction and hence, dilated cardiomyopathy. Thus, OPN might therefore constitute a potential therapeutic target to limit heart failure.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Osteopontina/metabolismo , Animais , Cardiomiopatia Dilatada/etiologia , Modelos Animais de Doenças , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Insuficiência Cardíaca/etiologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Miocardite/etiologia , Miocardite/metabolismo , Miocardite/patologia , Infiltração de Neutrófilos
4.
Arterioscler Thromb Vasc Biol ; 29(12): 2090-2, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19745199

RESUMO

OBJECTIVE: Studying the mechanisms of neovascularization and evaluating the effects of proangiogenic strategies require accurate analysis of the neovascular network. We sought to evaluate the contribution of the microcomputed tomography (mCT) providing high-resolution 3-dimensional (3D) structural data, to a better comprehension of the well-studied mouse hindlimb postischemic neovascularization. METHODS AND RESULTS: We showed a predominant arteriogenesis process in the thigh and a predominant angiogenesis-related process in the tibiofibular region, in response to ischemia during the first 15 days. After 15 days, mCT quantitative analysis reveals a remodeling of arterial neovessels and a regression depending on the restoration of the blood flow. We provided also new mCT data on the rapid and potent angiogenic effects of mesenchymal stem cell therapy on vessel formation and organization. We discussed the contribution of this technique compared with or in addition to data generated by the more conventional approaches. CONCLUSIONS: This study demonstrated that optimized mCT is a robust method for providing new insights into the 3D understanding of postischemic vessel formation.


Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/patologia , Neovascularização Fisiológica , Tomografia Computadorizada por Raios X/métodos , Animais , Bário , Meios de Contraste , Modelos Animais de Doenças , Imageamento Tridimensional , Isquemia/cirurgia , Transplante de Células-Tronco Mesenquimais , Camundongos , Neopreno , Doenças Vasculares Periféricas/patologia , Doenças Vasculares Periféricas/cirurgia
5.
Arterioscler Thromb Vasc Biol ; 28(12): 2131-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18772499

RESUMO

OBJECTIVE: Estradiol (E(2)) is known to accelerate reendothelialization and thus prevent intimal thickening and in-stent restenosis after angioplasty. Transplantation experiments with ERalpha(-/-) mice have previously shown that E(2) acts through local and bone marrow cell compartments to enhance endothelial healing. However, the downstream mechanisms induced by E(2) to mediate endothelial repair are still poorly understood. METHODS AND RESULTS: We show here that after endovascular carotid artery injury, E(2)-enhanced endothelial repair is lost in osteopontin-deficient mice (OPN(-/-)). Transplantation of OPN(-/-) bone marrow into wild-type lethally irradiated mice, and vice versa, suggested that osteopontin plays a crucial role in both the local and the bone marrow actions of E(2). In the vascular compartment, using transgenic mice expressing doxycyclin regulatable-osteopontin, we show that endothelial cell specific osteopontin overexpression mimics E(2)-enhanced endothelial cell migration and proliferation in the regenerating endothelium. In the bone marrow cell compartment, we demonstrate that E(2) enhances bone marrow-derived mononuclear cell adhesion to regenerating endothelium in vivo, and that this effect is dependent on osteopontin. CONCLUSIONS: We demonstrate here that E(2) acceleration of the endothelial repair requires osteopontin, both for bone marrow-derived cell recruitment and for endothelial cell migration and proliferation.


Assuntos
Lesões das Artérias Carótidas/fisiopatologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Estradiol/farmacologia , Osteopontina/fisiologia , Animais , Transplante de Medula Óssea , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteopontina/deficiência , Osteopontina/genética , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
6.
Cardiovasc Res ; 77(1): 202-10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18006484

RESUMO

AIMS: beta-adrenoceptor (beta-AR)-mediated relaxation was characterized in pulmonary arteries from normoxic and hypoxic (as model of pulmonary hypertension) mice. The endothelial NO synthase (eNOS) pathway was especially investigated because of its potential vasculoprotective effects. METHODS: Pulmonary arteries from control or hypoxic (0.5 atm for 21 days) wild-type or eNOS-/- mice were used for pharmacological characterization of beta-AR-mediated relaxation in myograph, and for immunohistochemistry using anti-beta-AR antibodies. RESULTS: In pulmonary arteries from normoxic mice, isoproterenol (beta-AR agonist) and procaterol (selective beta2-AR agonist) elicited relaxation, while cyanopindolol and CL316243 (beta3-AR agonists) were ineffective. The effect of isoproterenol was antagonized by CGP20712A and ICI118551 (beta1- or beta2-AR antagonists, respectively) and also partially inhibited by N omega-nitro-L-arginine methylester (L-NAME, a NOS inhibitor), endothelium denudation, or eNOS gene deletion. Relaxation to procaterol was abolished by L-NAME or endothelium removal. In eNOS-/- mice, procaterol-induced relaxation was decreased but was insensitive to L-NAME, this residual effect involving other endothelium-dependent relaxant factors as compensatory mechanisms. Immunostaining for beta2-AR was observed in the endothelial layer, but not the medial layer of pulmonary arteries. Pulmonary arteries from hypoxic mice exhibited decreased endothelial NO-dependent relaxation to acetylcholine. However, in these arteries, relaxation to procaterol was either unaffected (extralobar segments) or even increased (intralobar segments) and was still abolished by L-NAME or endothelium removal. CONCLUSION: beta1- and beta2-AR, but not beta3-AR, mediate relaxation of mice pulmonary arteries. The beta2-AR component is dependent on eNOS activity and is preserved following chronic hypoxia. These data highlight the role of the beta2-AR as a pharmacological target to induce/restore endothelial NO-dependent protective effects in pulmonary circulation.


Assuntos
Endotélio Vascular/fisiologia , Hipertensão Pulmonar/fisiopatologia , Óxido Nítrico/fisiologia , Artéria Pulmonar/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Vasodilatação , Animais , Doença Crônica , Hipertensão Pulmonar/prevenção & controle , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos beta/classificação
7.
Circ Res ; 96(12): 1299-306, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15920021

RESUMO

Phosphorylation and subsequent inactivation of glycogen synthase kinase (GSK)-3beta via the Akt/PI3-Kinase pathway during ischemic preconditioning (PC) has been shown to be cardioprotective. As FrzA/sFRP-1, a secreted antagonist of the Wnt/Frizzled pathway, is expressed in the heart and is able to decrease the phosphorylation of GSK-3beta in vitro on vascular cells, we examined its effect during PC using transgenic mouse overexpressing FrzA in cardiomyocytes (alpha-MHC promoter) under a conditional transgene expression approach (tet-off system). Overexpression of FrzA inhibited the increase in GSK-3beta phosphorylation as well as protein kinase C (PKC) epsilon activation in transgenic mice after PC as compared with littermates. Phospho-Akt (P-Akt), phospho-JNK, or the cytoplasmic beta-catenin levels were not modified, phospho-p38 (P-p38) was slightly increased in transgenic mice after PC as compared with littermates. FrzA transgenic mice displayed a larger infarct size and a greater worsening of cardiac function compared with littermates. All these differences were reversed by the addition of doxycycline. This study demonstrates for the first time that disruption of a beta-catenin independent Wnt/Frizzled pathway induces the activation of GSK-3beta and reverses the benefit of preconditioning.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Precondicionamento Isquêmico Miocárdico , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas do Citoesqueleto/análise , Doxiciclina/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/terapia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transativadores/análise , Proteínas Wnt , beta Catenina , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Can J Cardiol ; 20(14): 1467-75, 2004 Dec.
Artigo em Francês | MEDLINE | ID: mdl-15614343

RESUMO

Myocardial infarction involves scar-formation mechanisms in which inflammation, proliferation, cell differentiation, apoptosis and angiogenesis all play a role. Better knowledge of the scar-formation process would be helpful in developing new therapies. The authors have generated a mouse model for infarction because its possible application in transgenic mice would allow the role of target genes in postinfarction scar-formation mechanisms to be studied. An infarction is caused by ligating the descending branch of the left coronary artery. At various times after ligation, the mice are sacrificed to determine the size of the infarction, left ventricular function and the overall myocardial scar-formation process. Early mortality was 10%. Between the fourth and sixth day postsurgery, 25% of mice died of a ruptured, infarcted left ventricle. The size of the infarctions diminished with time, while the surface of the left ventricle increased. In hemodynamics, 15 and 30 days after infarction, left ventricle telediastolic pressure was higher, telesystolic pressure was lower and contractility in indexes had collapsed. After an inflammatory phase in which polynuclear neutrophils colonized the scar, granulation tissue set in with a proliferation of myofibroblasts and growth of new blood vessels. These cells disappeared from the scar gradually, leaving behind a matrix rich in collagen and devoid of any contractile properties. The authors have characterized a murine model of myocardial infarction, with applications in transgenic mice and in view of establishing new agents in postmyocardial infarction repair.


Assuntos
Cicatriz/patologia , Vasos Coronários/patologia , Ruptura Cardíaca Pós-Infarto/patologia , Infarto do Miocárdio/cirurgia , Função Ventricular Esquerda/fisiologia , Animais , Cicatriz/etiologia , Modelos Animais de Doenças , Feminino , Ruptura Cardíaca Pós-Infarto/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Complicações Pós-Operatórias/patologia , Fatores de Risco , Sensibilidade e Especificidade , Análise de Sobrevida , Remodelação Ventricular
9.
Cardiovasc Res ; 63(4): 731-8, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15306229

RESUMO

OBJECTIVE: FrzA, a member of the group of secreted frizzled related proteins (sFRP) that is expressed in the cardiovascular system, has been shown to antagonize the Wnt/frizzled signaling pathway. We have recently demonstrated its role in vascular cell growth control in vitro. In this study, we aimed to examine the mechanisms by which FrzA exerts its antiproliferative effect on vascular cells in vitro and its potential effect in vivo. METHODS AND RESULTS: On synchronized, growth-arrested endothelial cells (EC) and smooth muscle cells (SMC) treated with the recombinant purified FrzA protein, flow cytometry analysis showed that the recombinant FrzA protein delayed G1 phase and entry into S-phase. Western blot experiments demonstrated that the treatment of EC or SMC with FrzA was associated with a decrease in the level of the cyclins and cyclin-dependent kinases and an increase in cytosolic phospho-beta-catenin levels. The FrzA-induced cell cycle delay was resolved by 24 h. C57BL/6J mice underwent surgery to produce unilateral hindlimb ischemia and empty adenoviruses (AdE) or adenoviruses coding for FrzA (AdFrzA) were injected at the time of the surgery. In AdFrzA-treated mice in the 7 days following surgery, we showed a decrease in cell proliferation, capillary density, and blood flow recovery and a reduced expression of cyclin and cdk activity in the ischemic muscle compared to that in the AdE-treated ischemic muscle. To gain insight into the pathway activated by FrzA overexpression, we showed an increase in the level of cytosolic phospho-beta-catenin, a marker of beta-catenin degradation, in AdFrzA-treated ischemic muscle compared to that in control AdE-treated ischemic muscle. CONCLUSION: We provided the first evidence that an impairment of the Wnt-Frizzled pathway, via FrzA overexpression, controlled proliferation and neovascularization after muscle ischemia.


Assuntos
Endotélio Vascular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais/fisiologia , Adenoviridae/genética , Animais , Western Blotting/métodos , Divisão Celular , Células Cultivadas , Quinases Ciclina-Dependentes , Ciclinas , Proteínas do Citoesqueleto/metabolismo , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Membro Posterior , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Transativadores/metabolismo , Transdução Genética/métodos , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...