Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472805

RESUMO

A fruit leather (apple and acáchul berry) oriented toward women of reproductive age was developed. The snack was supplemented with an ingredient composed of folic acid (FA) and whey proteins (WPI) to ensure the required vitamin intake to prevent fetal neural tube defects. In order to generate a low-calorie snack, alternative sweeteners were used (stevia and maltitol). The fruit leather composition was determined. Also, an in vitro digestion process was carried out to evaluate the bioaccessibility of compounds with antioxidant capacity (AC), total polyphenols (TPCs), total monomeric anthocyanins (ACY), and FA. The quantification of FA was conducted by a microbiological method and by HPLC. The leather contained carbohydrates (70%) and antioxidant compounds, mainly from fruits. Bioaccessibility was high for AC (50%) and TPCs (90%), and low for ACY (17%). Regarding FA, bioaccessibility was higher for WPI-FA (50%) than for FA alone (37%), suggesting that WPI effectively protected the vitamin from processing and digestion. Furthermore, the product was shown to be non-cytotoxic in a Caco-2 cell model. The developed snack is an interesting option due to its low energy intake, no added sugar, and high content of bioactive compounds. Also, the supplementation with WPI-FA improved the conservation and bioaccessibility of FA.

2.
Microb Biotechnol ; 16(6): 1232-1249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752119

RESUMO

The S-layer or surface layer protein (SLP) is the most ancient biological envelope, highly conserved in several Bacteria and Archaea. In lactic acid bacteria (LAB), SLP is only found in species belonging to the Lactobacillaceae family, many of them considered probiotic microorganisms. New reclassification of members within the Lactobacillaceae family (International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2782) and newly sequenced genomes demands an updated revision on SLP genes and domain organization. There is growing information concerning SLP occurrence, molecular biology, biophysical properties, and applications. Here, we focus on the prediction of slp genes within the Lactobacillaceae family, and specifically, on the neat interconnection between the two different modular SLP domain organizations and the new reclassified genera. We summarize the results in a concise tabulated manner to review the present knowledge on SLPs and discuss the most relevant and updated concepts regarding SLP sequence clustering. Our assessment is based on sequence alignments considering the new genera classification and protein domain definition with post-translational modifications. We analyse the difficulties encountered to resolve the SLPs 3D structure, describing the need for structure prediction approaches and the relation between protein structure and its anchorage mechanism to the cell wall. Finally, we enumerate new SLP applications regarding heterologous display, pathogen exclusion, immunostimulation, and metal binding.


Assuntos
Proteínas de Bactérias , Glicoproteínas de Membrana , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lactobacillaceae/metabolismo
3.
Appl Microbiol Biotechnol ; 103(12): 4839-4857, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31053916

RESUMO

The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.


Assuntos
Proteínas de Bactérias/metabolismo , Lactobacillus acidophilus/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Glicoproteínas de Membrana/isolamento & purificação , Ligação Proteica
4.
Polymers (Basel) ; 10(2)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30966185

RESUMO

Isolated 7S and 11S globulins obtained from defeated soy flour were complexated with folic acid (FA) in order to generate nano-carriers for this important vitamin in human nutrition. Fluorescence spectroscopy and dynamic light scattering were applied to follow the nano-complexes formation and for their characterization. Fluorescence experimental data were modeled by the Stern-Volmer and a modified double logarithm approach. The results obtained confirmed static quenching. The number of binding sites on the protein molecule was ~1. The values obtained for the binding constants suggest a high affinity between proteins and FA. Particle size distribution allowed to study the protein aggregation phenomenon induced by FA bound to the native proteins. Z-average manifested a clear trend to protein aggregation. 11S-FA nano-complexes resulted in more polydispersity. ζ-potential of FA nano-complexes did not show a remarkable change after FA complexation. The biological activity of nano-complexes loaded with FA was explored in terms of their capacity to enhance the biomass formation of Lactobacillus casei BL23. The results concerning to nano-complexes inclusion in culture media showed higher bacterial growth. Such a result was attributed to the entry of the acid by the specific receptors concomitantly by the peptide receptors. These findings have technological impact for the use of globulins-FA based nano-complexes in nutraceutical, pharmaceutical and food industries.

5.
Appl Microbiol Biotechnol ; 100(19): 8475-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27376794

RESUMO

In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.


Assuntos
Expressão Gênica , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/metabolismo , Pressão Osmótica , Lactobacillus acidophilus/efeitos dos fármacos , Cloreto de Sódio/metabolismo
6.
Genome Announc ; 3(1)2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593259

RESUMO

We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes.

7.
Microbiology (Reading) ; 159(Pt 11): 2416-2426, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014660

RESUMO

The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition.


Assuntos
Parede Celular/química , Lacticaseibacillus casei/citologia , Lacticaseibacillus casei/fisiologia , Lipopolissacarídeos/análise , Pressão Osmótica , Ácidos Teicoicos/análise , Adaptação Fisiológica , Biofilmes/crescimento & desenvolvimento , Cátions/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Lacticaseibacillus casei/química , Lacticaseibacillus casei/genética , Ligação Proteica
8.
J Microbiol Methods ; 83(2): 164-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807556

RESUMO

We here describe a new method for electroporation of Lactobacillus species, obligately homofermentative and facultatively heterofermentative, based on the cell-wall weakening resulting from growth in high-salt media. For L. casei, optimum transformation efficiency of up to 10(5) transformants per microgram of plasmid DNA was achieved following growth in the presence of 0.9 M NaCl. Plasmids of different sizes and replication origins were also similarly transformed. These competent cells could be used either directly or stored frozen, up to 1 month, for future use, with similar efficiency. This protocol was assayed with different Lactobacillus species: L. delbrueckii subsp. lactis, L. paracasei, L. plantarum and L. acidophilus, and it was found that they were transformed with similar efficiency.


Assuntos
Meios de Cultura/química , Eletroporação/métodos , Lactobacillus/genética , Sais/metabolismo , Criopreservação/métodos , Lactobacillus/crescimento & desenvolvimento , Viabilidade Microbiana , Plasmídeos
9.
Appl Environ Microbiol ; 76(3): 974-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948852

RESUMO

We have previously described a murein hydrolase activity for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356. Here we show that, in combination with nisin, this S-layer acts synergistically to inhibit the growth of pathogenic Gram-negative Salmonella enterica and potential pathogenic Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus. In addition, bacteriolytic effects were observed for the Gram-positive species tested. We postulate that the S-layer enhances the access of nisin into the cell membrane by enabling it to cross the cell wall, while nisin provides the sudden ion-nonspecific dissipation of the proton motive force required to enhance the S-layer murein hydrolase activity.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Lactobacillus acidophilus/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Nisina/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Sinergismo Farmacológico , Microbiologia de Alimentos , Genes Bacterianos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Temperatura Alta , Testes de Sensibilidade Microbiana , Permeabilidade , Polilisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tensoativos/farmacologia
10.
Appl Environ Microbiol ; 74(24): 7824-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931300

RESUMO

We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verification of the enzymatic activity.


Assuntos
Lactobacillus acidophilus/enzimologia , Glicoproteínas de Membrana/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Parede Celular/metabolismo , Clonagem Molecular , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...