Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(1): 013302, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390683

RESUMO

We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

2.
Sci Rep ; 7: 43548, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272471

RESUMO

Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

3.
Phys Rev E ; 94(3-1): 033208, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739766

RESUMO

We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3×10^{20}Wcm^{-2}. With a laser focal spot size of 10 µm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 µm. Maximum proton energies of ∼25 MeV are achieved for targets matching the focal spot size of 10 µm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.

4.
Rev Sci Instrum ; 82(4): 043301, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21528999

RESUMO

A novel ion wide angle spectrometer (iWASP) has been developed, which is capable of measuring angularly resolved energy distributions of protons and a second ion species, such as carbon C(6 +), simultaneously. The energy resolution for protons and carbon ions is better than 10% at ∼50 MeV/nucleon and thus suitable for the study of novel laser-ion acceleration schemes aiming for ultrahigh particle energies. A wedged magnet design enables an acceptance angle of 30°(∼524 mrad) and high angular accuracy in the µrad range. First, results obtained at the LANL Trident laser facility are presented demonstrating high energy and angular resolution of this novel iWASP.

5.
Phys Rev A Gen Phys ; 39(2): 864-880, 1989 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9901313
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...