Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(6): 104464, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35634577

RESUMO

Current and previous tuberculosis (TB) increase the risk of COVID-19 mortality and severe disease. To identify mechanisms of immunopathogenic interaction between COVID-19 and TB, we performed a systematic review and patient-level meta-analysis of COVID-19 transcriptomic signatures, spanning disease severity, from whole blood, PBMCs, and BALF. 35 eligible signatures were profiled on 1181 RNA-seq samples from 853 individuals across the spectrum of TB infection. Thirteen COVID-19 gene-signatures had significantly higher "COVID-19 risk scores" in active TB and latent TB progressors compared with non-progressors and uninfected controls (p<0·005), in three independent cohorts. Integrative single-cell-RNAseq analysis identified FCN1- and SPP1-expressing macrophages enriched in severe COVID-19 BALF and active TB blood. Gene ontology and protein-protein interaction networks identified 12-gene disease-exacerbation hot spots between COVID-19 and TB. Finally, we in vitro validated that SARS-CoV-2 infection is increased in human macrophages cultured in the inflammatory milieu of Mtb-infected macrophages, correlating with TMPRSS2, IFNA1, IFNB1, IFNG, TNF, and IL1B induction.

2.
Immunity ; 54(8): 1758-1771.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256013

RESUMO

Apoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses. We further show that apoptotic pathways can be targeted therapeutically with clinical-stage compounds that antagonize inhibitor of apoptosis (IAP) proteins to promote clearance of M. tuberculosis in mice. These findings reveal that any inhibition of apoptosis by M. tuberculosis is incomplete in vivo, advancing our understanding of host-protective responses to tuberculosis (TB) and revealing host pathways that may be targetable for treatment of disease.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar/imunologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular , Dipeptídeos/uso terapêutico , Humanos , Indóis/uso terapêutico , Ativação Linfocitária/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/imunologia , Tiazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico
3.
Front Immunol ; 8: 1247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051761

RESUMO

BACKGROUND: A translational study in patients with myeloma to determine the utility of immune profiling to predict infection risk in patients with hematological malignancy was conducted. METHODS: Baseline, end of induction, and maintenance peripheral blood mononuclear cells from 40 patients were evaluated. Immune cell populations and cytokines released from 1 × 106 cells/ml cultured in the presence of a panel of stimuli (cytomegalovirus, influenza, S. pneumoniae, phorbol myristate acetate/ionomycin) and in media alone were quantified. Patient characteristics and infective episodes were captured from clinical records. Immunological variables associated with increased risk for infection in the 3-month period following sample collection were identified using univariate analysis (p < 0.05) and refined with multivariable analysis to define a predictive immune profile. RESULTS: 525 stimulant samples with 19,950 stimulant-cytokine combinations across three periods were studied, including 61 episodes of infection. Mitogen-stimulated release of IL3 and IL5 were significantly associated with increased risk for subsequent infection during maintenance therapy. A lower Th1/Th2 ratio and higher cytokine response ratios for IL5 and IL13 during maintenance therapy were also significantly associated with increased risk for infection. On multivariable analysis, only IL5 in response to mitogen stimulation was predictive of infection. The lack of cytokine response and numerical value of immune cells were not predictive of infection. CONCLUSION: Profiling cytokine release in response to mitogen stimulation can assist with predicting subsequent onset of infection in patients with hematological malignancy during maintenance therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...