Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-13, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587010

RESUMO

Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.

2.
Biotechnol Bioeng ; 120(1): 239-249, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36123299

RESUMO

Biofilms are often polymicrobial in nature, which can impact their behavior and overall structure, often resulting in an increase in biomass and enhanced antimicrobial resistance. Using plate counts and locked nucleic acid/2'-O-methyl-RNA fluorescence in situ hybridization (LNA/2'OMe-FISH), we studied the interactions of four species commonly associated with catheter-associated urinary tract infections (CAUTI): Enterococcus faecalis, Escherichia coli, Candida albicans, and Proteus mirabilis. Eleven combinations of biofilms were grown on silicone coupons placed in 24-well plates for 24 h, 37°C, in artificial urine medium (AUM). Results showed that P. mirabilis was the dominant species and was able to inhibit both E. coli and C. albicans growth. In the absence of P. mirabilis, an antagonistic relationship between E. coli and C. albicans was observed, with the former being dominant. E. faecalis growth was not affected in any combination, showing a more mutualistic relationship with the other species. Imaging results correlated with the plate count data and provided visual verification of species undetected using the viable plate count. Moreover, the three bacterial species showed overall good repeatability SD (Sr ) values (0.1-0.54) in all combinations tested, whereas C. albicans had higher repeatability Sr values (0.36-1.18). The study showed the complexity of early-stage interactions in polymicrobial biofilms. These interactions could serve as a starting point when considering targets for preventing or treating CAUTI biofilms containing these species.


Assuntos
Cateteres Urinários , Infecções Urinárias , Cateteres Urinários/microbiologia , Escherichia coli/genética , Hibridização in Situ Fluorescente , Proteus mirabilis/genética , Biofilmes , Infecções Urinárias/prevenção & controle , Candida albicans
3.
Sci Rep ; 11(1): 13779, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215805

RESUMO

Microtiter plate methods are commonly used for biofilm assessment. However, results obtained with these methods have often been difficult to reproduce. Hence, it is important to obtain a better understanding of the repeatability and reproducibility of these methods. An interlaboratory study was performed in five different laboratories to evaluate the reproducibility and responsiveness of three methods to quantify Staphylococcus aureus biofilm formation in 96-well microtiter plates: crystal violet, resazurin, and plate counts. An inter-lab protocol was developed for the study. The protocol was separated into three steps: biofilm growth, biofilm challenge, biofilm assessment. For control experiments participants performed the growth and assessment steps only. For treatment experiments, all three steps were performed and the efficacy of sodium hypochlorite (NaOCl) in killing S. aureus biofilms was evaluated. In control experiments, on the log10-scale, the reproducibility SD (SR) was 0.44 for crystal violet, 0.53 for resazurin, and 0.92 for the plate counts. In the treatment experiments, plate counts had the best responsiveness to different levels of efficacy and also the best reproducibility with respect to responsiveness (Slope/SR = 1.02), making it the more reliable method to use in an antimicrobial efficacy test. This study showed that the microtiter plate is a versatile and easy-to-use biofilm reactor, which exhibits good repeatability and reproducibility for different types of assessment methods, as long as a suitable experimental design and statistical analysis is applied.


Assuntos
Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Hipoclorito de Sódio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Violeta Genciana/farmacologia , Humanos , Oxazinas/farmacologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Xantenos/farmacologia
4.
Trends Microbiol ; 29(12): 1062-1071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34088548

RESUMO

Biofilms are complex and dynamic structures that include many more components than just viable cells. Therefore, the apparently simple goal of growing reproducible biofilms is often elusive. One of the challenges in defining reproducibility for biofilm research is that different research fields use a spectrum of parameters to define reproducibility for their particular application. For instance, is the researcher interested in achieving a similar population density, height of biofilm structures, or function of the biofilm in a certain ecosystem/industrial context? Within this article we categorize reproducibility into four different levels: level 1, no reproducibility; level 2, standard reproducibility; level 3, potential standard reproducibility; and level 4, total reproducibility. To better understand the need for these different levels of reproducibility, we expand on the 'cities of microbes' analogy for biofilms by imagining that a new civilization has reached the Earth's outskirts and starts studying the Earth's cities. This will provide a better sense of scale and illustrate how small details can impact profoundly on the growth and behavior of a biofilm and our understanding of reproducibility.


Assuntos
Biofilmes , Ecossistema , Cidades , Humanos , Reprodutibilidade dos Testes
5.
Methods Mol Biol ; 2246: 97-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576985

RESUMO

Biofilms are often composed of different bacterial and fungal species/strains, which form complex structures based on social interactions with each other. Fluorescence in situ hybridization (FISH) can help us identify the different species/strains present within a biofilm , and when coupled with confocal scanning laser microscopy (CSLM), it enables the visualization of the three-dimensional (3D) structure of the biofilm and the spatial arrangement of each individual species/strain within it. In this chapter, we describe the protocol for characterizing multistrain or multispecies biofilm formation using NAM-FISH and CSLM.


Assuntos
Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Hibridização in Situ Fluorescente/métodos , Microscopia Confocal/métodos , Ácidos Nucleicos/genética , Fluorescência
6.
Biofilm ; 2: 100010, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33447797

RESUMO

The lack of reproducibility of published studies is one of the major issues facing the scientific community, and the field of biofilm microbiology has been no exception. One effective strategy against this multifaceted problem is the use of minimum information guidelines. This strategy provides a guide for authors and reviewers on the necessary information that a manuscript should include for the experiments in a study to be clearly interpreted and independently reproduced. As a result of several discussions between international groups working in the area of biofilms, we present a guideline for the spectrophotometric and fluorometric assessment of biofilm formation in microplates. This guideline has been divided into 5 main sections, each presenting a comprehensive set of recommendations. The intention of the minimum information guideline is to improve the quality of scientific communication that will augment interlaboratory reproducibility in biofilm microplate assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...