Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 560(7716): E4, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930352

RESUMO

In this Letter, owing to an error during the production process, the author affiliations were listed incorrectly. Affiliation number 5 (Colleges of Nanoscale Science and Engineering, State University of New York (SUNY)) was repeated, and affiliation numbers 6-8 were incorrect. In addition, the phrase "two oxide thickness variants" should have been "two gate oxide thickness variants". These errors have all been corrected online.

2.
Opt Express ; 26(10): 13106-13121, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801342

RESUMO

Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

3.
Nature ; 556(7701): 349-354, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670262

RESUMO

Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions1,2. This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing3,4. By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip'1,6-8. As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge10,11, this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

4.
Nat Commun ; 7: 10864, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949229

RESUMO

Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.

5.
Nature ; 528(7583): 534-8, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26701054

RESUMO

Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

6.
Opt Express ; 21(11): 13219-27, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736576

RESUMO

Advanced modulation formats call for suitable IQ modulators. Using the silicon-on-insulator (SOI) platform we exploit the linear electro-optic effect by functionalizing a photonic integrated circuit with an organic χ(2)-nonlinear cladding. We demonstrate that this silicon-organic hybrid (SOH) technology allows the fabrication of IQ modulators for generating 16QAM signals with data rates up to 112 Gbit/s. To the best of our knowledge, this is the highest single-polarization data rate achieved so far with a silicon-integrated modulator. We found an energy consumption of 640 fJ/bit.

7.
Opt Lett ; 37(22): 4681-3, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164878

RESUMO

Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.

8.
Opt Express ; 20(14): 15359-76, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772233

RESUMO

A highly efficient phase shifter based on the silicon-organic hybrid (SOH) platform is theoretically investigated and experimentally tested. The device consists of a silicon slot waveguide covered with an organic liquid-crystal (LC) cladding. A record-low voltage-length product of U(π)L = 0.085 Vmm can be achieved for high-purity materials where an optimum operation point can be set by a DC bias. With standard materials and without a DC bias, we measure a phase shift of 35π with a drive voltage of only 5 V for a 1.7 mm long device corresponding to a voltage-length product of U(π)L = 0.24 Vmm. The power dissipation is about six orders of magnitude smaller than that of state-of-the-art thermo-optic devices, thereby enabling dense integration of LC phase shifters in advanced photonic integrated circuits.

9.
Opt Express ; 20(12): 12926-38, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714320

RESUMO

Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

10.
Opt Express ; 17(20): 17357-68, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907521

RESUMO

Geometry, nonlinearity, dispersion and two-photon absorption figure of merit of three basic silicon-organic hybrid waveguide designs are compared. Four-wave mixing and heterodyne pump-probe measurements show that all designs achieve high nonlinearities. The fundamental limitation of two-photon absorption in silicon is overcome using silicon-organic hybrid integration, with a five-fold improvement for the figure of merit (FOM). The value of FOM = 2.19 measured for silicon-compatible nonlinear slot waveguides is the highest value published.


Assuntos
Compostos Orgânicos/química , Refratometria/métodos , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Dinâmica não Linear , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
11.
J Phys Condens Matter ; 21(4): 045503, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21715809

RESUMO

This work shows that delocalization phenomena in single-electron quasi-one-dimensional quantum chains may occur at points different from the center of the energy spectrum (E = 0) and in systems lacking the symmetry [Formula: see text]. It is found that the peaks appearing in the average conductance are controlled by the band structure of the periodic system underlying the disorder. The average conductance is expanded in powers of the disorder strength, allowing the conductance to be redefined as the sum of a regular and an anomalous contribution. The first non-vanishing term of the anomalous part is of the fourth order. The fourth-order term can be calculated for any number of coupled chains in terms of a matrix expression. For strictly one-dimensional systems the expansion is calculated up to the 12th order for both diagonal and real off-diagonal disorder and is compared with the numerical data. It is also found that the anomalous contribution defined here is responsible for an even-odd effect of the average conductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...