Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 107(6): 534-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353239

RESUMO

The current Boron Neutron Capture Therapy (BNCT) experiments performed at the University of Pavia, Italy, are focusing on the in vivo irradiations of small animals (rats and mice) in order to evaluate the effectiveness of BNCT in the treatment of diffused lung tumors. After the irradiation, the animals are manipulated, which requires an evaluation of the residual radioactivity induced by neutron activation and the relative radiological risk assessment to guarantee the radiation protection of the workers. The induced activity in the irradiated animals was measured by high-resolution open geometry gamma spectroscopy and compared with values obtained by Monte Carlo simulation. After an irradiation time of 15 min in a position where the in-air thermal flux is about 1.2 × 10(10) cm(-2) s(-1), the specific activity induced in the body of the animal is mainly due to 24Na, 38Cl, 42K, 56Mn, 27Mg and 49Ca; it is approximately 540 Bq g(-1) in the rat and around 2,050 Bq g(-1) in the mouse. During the irradiation, the animal body (except the lung region) is housed in a 95% enriched 6Li shield; the primary radioisotopes produced inside the shield by the neutron irradiation are 3H by the 6Li capture reaction and 18F by the reaction sequence 6Li(n,α)3H → 16O(t,n)18F. The specific activities of these products are 3.3 kBq g(-1) and 880 Bq g(-1), respectively.


Assuntos
Terapia por Captura de Nêutron de Boro , Raios gama , Nêutrons , Reatores Nucleares , Proteção Radiológica , Animais , Neoplasias Pulmonares/radioterapia , Camundongos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Ratos , Eficiência Biológica Relativa
2.
Int J Radiat Biol ; 88(1-2): 77-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21957961

RESUMO

PURPOSE: The role of track structures for understanding the biological effects of radiation has been the subject of research activities for decades. The physics that describes such processes is the core Monte Carlo codes, such as the biophysical PARTRAC (PARticle TRACks) code described in this review, which follow the mechanisms of radiation-matter interaction from the early stage. In this paper a review of the track structure theory (and of its possible extension concerning non-DNA targets) is presented. MATERIALS AND METHODS: The role of radiation quality and track structure is analyzed starting from the heavy ions results obtained with the biophysical Monte Carlo code PARTRAC (PARticles TRACks). PARTRAC calculates DNA damage in human cells based on the superposition of simulated track structures in liquid water to an 'atom-by-atom' model of human DNA. RESULTS: Calculations for DNA fragmentation compared with experimental data for different radiation qualities are illustrated. As an example, the strong dependence of the complexity of DNA damage on radiation track structure, and the very large production of very small DNA fragments (lower than 1 kbp (kilo base pairs) usually not detected experimentally) after high LET (high-Linear Energy Transfer) irradiation is shown. Furthermore the possible importance of non-nuclear/non-DNA targets is discussed in the particular case of cellular membrane and mitochondria. CONCLUSIONS: The importance of the track structure is underlined, in particular the dependence of a given late cellular effect on the spatial distribution of DNA double-strand breaks (DSB) along the radiation track. These results show that the relative biological effectiveness (RBE) for DSB production can be significantly larger than 1. Moreover the cluster properties of high LET radiation may determine specific initial targets and damage evolution.


Assuntos
Método de Monte Carlo , Radiobiologia/métodos , Partículas alfa/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos da radiação , Elétrons/efeitos adversos , Humanos , Fótons/efeitos adversos
3.
Radiat Res ; 174(3): 280-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20726722

RESUMO

Cell-to-cell signaling has become a significant issue in radiation biology due to experimental evidence, accumulated primarily since the early 1990s, of radiation-induced bystander effects. Several candidate mediators involved in cell-to-cell communication have been investigated and proposed as being responsible for this phenomenon, but the current investigation techniques (both theoretical and experimental) of the mechanisms involved, due to the particular set-up of each experiment, result in experimental data that often are not directly comparable. In this study, a comprehensive approach was adopted to describe cell-to-cell communication (focusing on cytokine signaling) and its modulation by external agents such as ionizing radiation. The aim was also to provide integrated theoretical instruments and experimental data to help in understanding the peculiarities of in vitro experiments. Theoretical/modeling activities were integrated with experimental measurements by (1) redesigning a cybernetic model (proposed in its original form in the 1950s) to frame cell-to-cell communication processes, (2) implementing and developing a mathematical model, and (3) designing and carrying out experiments to quantify key parameters involved in intercellular signaling (focusing as a pilot study on the release and decay of IL-6 molecules and their modulation by radiation). This formalization provides an interpretative framework for understanding the intercellular signaling and in particular for focusing on the study of cell-to-cell communication in a "step-by-step" approach. Under this model, the complex phenomenon of signal transmission was reduced where possible into independent processes to investigate them separately, providing an evaluation of the role of cell communication to guarantee and maintain the robustness of the in vitro experimental systems against the effects of perturbations.


Assuntos
Comunicação Celular/efeitos da radiação , Radiação Ionizante , Linhagem Celular , Meios de Cultura , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Meia-Vida , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...