Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(50): 27857-27866, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38063165

RESUMO

We developed a high-dimensional neural network potential (NNP) to describe the structural and energetic properties of borophene deposited on silver. This NNP has the accuracy of density functional theory (DFT) calculations while achieving computational speedups of several orders of magnitude, allowing the study of extensive structures that may reveal intriguing moiré patterns or surface corrugations. We describe an efficient approach to constructing the training data set using an iterative technique known as the "adaptive learning approach". The developed NNP is able to produce, with excellent agreement, the structure, energy, and forces obtained at the DFT level. Finally, the calculated stability of various borophene polymorphs, including those not initially included in the training data set, shows better stabilization for ν ∼ 0.1 hole density, and in particular for the allotrope α (ν=1/9). The stability of borophene on the metal surface is shown to depend on its orientation, implying structural corrugation patterns that can be observed only from long-time simulations on extended systems. The NNP also demonstrates its ability to simulate vibrational densities of states and produce realistic structures with simulated STM images closely matching the experimental ones.

2.
Phys Chem Chem Phys ; 25(30): 20373-20380, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465915

RESUMO

In contrast with the predominant pyranose form of galactose, galactofuranose is known to be highly flexible. Such flexibility poses a remarkable challenge in terms of structural studies, thus hindering the in depth understanding of the structure/function relationship in this rare sugar. A thorough computational study based on molecular dynamics and density functional theory supported by vibrational spectroscopy in the gas phase was carried out to provide a better understanding of the instrinsic conformational preferences of galactofuranose. Based on energetic and spectroscopic criteria, we report a subtantially reduced conformational landscape: methyl α-D-galactofuranose adopts E2/1E conformations and methyl ß-D-galactofuranose adopts 1T2/1E conformations.

3.
Sci Rep ; 12(1): 13191, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915132

RESUMO

We present experiments where extreme ultraviolet femtosecond light pulses are used to photoexcite large molecular ions at high internal energy. This is done by combining an electrospray ionization source and a mass spectrometer with a pulsed light source based on high harmonic generation. This allows one to study the interaction between high energy photons and mass selected ions in conditions that are accessible on large-scale facilities. We show that even without an ion trapping device, systems as large as a protein can be studied. We observe light induced dissociative ionization and proton migration in model systems such as reserpine, insulin and cytochrome c. These results offer new perspectives to perform time-resolved experiments with ultrashort pulses at the heart of the emerging field of attosecond chemistry.


Assuntos
Fótons , Íons/química
4.
Phys Chem Chem Phys ; 24(2): 1016-1022, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919629

RESUMO

O-Acetylations are functional modifications which can be found on different hydroxyl groups of glycans and which contribute to the fine tuning of their biological activity. Localizing the acetyl modifications is notoriously challenging in glycoanalysis, in particular because of their mobility: loss or migration of the acetyl group may occur through the analytical workflow. Whereas migration conditions in the condensed phase have been rationalized, little is known about the suitability of Mass Spectrometry to retain and resolve the structure of O-acetylated glycan isomers. Here we used the resolving power of infrared ion spectroscopy in combination with ab initio calculations to assess the structure of O-acetylated monosaccharide ions in the gaseous environment of a mass analyzer. N-Acetyl glucosamines were synthetized with an O-acetyl group in positions 3 or 6, respectively. The protonated ions produced by electrospray ionization were observed by mass spectrometry and their vibrational fingerprints were recorded in the 3 µm range by IRMPD spectroscopy (InfraRed Multiple Photon Dissociation). Experimentally, the isomers show distinctive IR fingerprints. Additionally, ab initio calculations confirm the position of the O-acetylation and resolve their gas phase conformation. These findings demonstrate that the position of O-acetyl groups is retained through the transfer from solution to the gas phase, and can be identified by IRMPD spectroscopy.

5.
J Comput Chem ; 42(14): 1018-1027, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33760242

RESUMO

We present a comprehensive study of the most relevant numerical aspects influencing frequencies and intensities in the infrared spectrum of isolated polycyclic aromatic hydrocarbons (PAHs) regarding the overestimate of the IR CH-stretching bands. We use naphthalene as benchmark and show the validity of our results to different members of the PAH family. Our analysis relies on widely employed density functional theory methods and second-order vibrational perturbational theory for the computation of vibrational eigenstates. We have focused on the elucidation of the origin of the systematic overestimate of the intensities in the CH-stretching region. To rule out nonfundamental numerical errors, we have initially considered the influence of the electronic basis set and various other parameters on the different stages of the vibrational analysis. In a second stage, we have benchmarked the results of different density functional theory functionals with respect to the aforementioned overestimate taken as the ratio between the most prominent features of the spectrum, the CH-bending and the CH-stretching bands. Our results unambiguously indicate that the long-range correction plays a major role in this spurious numerical issue. More specifically, this phenomenon is due to an incorrect description of the charge distribution (and hence dipole) within the symmetrically relevant CH bonds. Long-range correction specifically remedies this issue. It improves the description of the intensities in the stretching region while at the same time it does not perturb significantly the rest of the spectrum. With respect to the frequencies, we have observed an overall improvement when compared to noncorrected functionals.

6.
Commun Chem ; 4(1): 124, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697624

RESUMO

Ultrafast charge, energy and structural dynamics in molecules are driven by the topology of the multidimensional potential energy surfaces that determines the coordinated electronic and nuclear motion. These processes are also strongly influenced by the interaction with the molecular environment, making very challenging a general understanding of these dynamics on a microscopic level. Here we use electrospray and mass spectrometry technologies to produce isolated molecular ions with a controlled micro-environment. We measure ultrafast photo-induced ππ*-πσ* dynamics in tryptophan species in the presence of a single, charged adduct. A striking increase of the timescale by more than one order of magnitude is observed when changing the added adduct atom. A model is proposed to rationalize the results, based on the localized and delocalized effects of the adduct on the electronic structure of the molecule. These results offer perspectives to control ultrafast molecular processes by designing the micro-environment on the Angström length scale.

7.
J Chem Theory Comput ; 16(3): 1681-1689, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32003996

RESUMO

Several methods are available to compute the anharmonicity in semirigid molecules. However, such methods are not yet routinely employed because of their high computational cost, especially for large molecules. The potential energy surface is required and generally approximated by a quartic force field potential based on ab initio calculation, thus limiting this approach to medium-sized molecules. We developed a new, fast, and accurate hybrid quantum mechanics/machine learning (QM/ML) approach to reduce the computational time for large systems. With this novel approach, we evaluated anharmonic frequencies of 37 molecules, thus covering a broad range of vibrational modes and chemical environments. The obtained fundamental frequencies reproduce results obtained using B2PLYP/def2tzvpp with a root-mean-square deviation (RMSD) of 21 cm-1 and experimental results with a RMSD of 23 cm-1. Along with this very good accuracy, the computational time with our hybrid QM/ML approach scales linearly with N, while the traditional full ab initio method scales as N2, where N is the number of atoms.

8.
J Phys Chem Lett ; 10(9): 2300-2305, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30999749

RESUMO

Understanding optical properties of molecular dyes is required to drive progress in molecular photonics. This requires a fundamental comprehension of the role of electronic structure, geometry, and interactions with the environment in order to guide molecular engineering strategies. In this context, we studied charged cyanine dye molecules in the gas phase with a controlled microenvironment to unravel the origin of the spectral tuning of this class of molecules. This was performed using a new approach combining femtosecond multiple-photon action spectroscopy of on-the-fly mass-selected molecular ions and high-level quantum calculations. While arguments based on molecular geometry are often used to design new polymethine dyes, we provide experimental evidence that electronic structure is of primary importance and hence the decisive criterion as suggested by recent theoretical investigations.

9.
J Mol Graph Model ; 88: 174-182, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30708284

RESUMO

Zinc-phthalocyanines ZnPc derivatives including quinoleinoxy groups have been studied through DFT calculations. The most stable geometries were characterized for the unsubstituted to the tetra substituted ZnPcs. The energy gap decreased from 2.146 eV for ZnPc to 2.050 eV for ZnPcR4, in agreement with the experimental trend, and indicating the reliability of the electrochemical evaluation of LUMO and HOMO energy levels. Optical transitions computed at the CAM-B3LYP-D3 with triple zeta basis sets were found to be in good agreement with experimental values for both the B and Q bands. Subsequently, structures were also characterized for NO2 adsorbed complexes, in order to assess the potential role of ZnPc as a NO2 sensor. A clear sigma bonding chemisorption of NO2 on Zn atom is observed for all derivatives, followed by a charge transfer from the π Pc conjugated system to the Zn-NO2 moiety. More importantly, after NO2 chemisorption on ZnPc derivative a remarkable red-shift is observed in the optical spectra, particularly for NO2/ZnPcR4 complex, thus offering a good index to detect the binding of NO2. The optical spectra and the vibrational spectra can therefore be used to detect the presence of NO2 and ZnPc derivatives show appropriate properties to constitute good NO2 sensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Indóis/química , Modelos Teóricos , Dióxido de Nitrogênio/análise , Compostos Organometálicos/química , Adsorção , Isoindóis , Modelos Moleculares , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade , Compostos de Zinco
10.
Anal Chem ; 90(20): 11741-11745, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30152689

RESUMO

The vast array of molecular isomerisms which form the complex molecular structure of carbohydrates is the foundation of their biological versatility but defies the analytical chemist. Hyphenations of mass spectrometry with orthogonal structural characterization, such as ion mobility or ion spectroscopy, have recently shown great promise for distinction between closely related molecular structures. Yet, the lack of analytical strategies for identification of isomers present in mixtures remains a major obstacle to routine carbohydrate sequencing. In this context, an ideal workflow for glycomics would combine isomer separation and individual characterization of the molecular structure with atomistic resolution. Here we report the implementation of such a multidimensional analytical strategy, which consists of the first online coupling of high-performance liquid chromatography (HPLC)-MS and infrared multiple photon dissociation (IRMPD) spectroscopy. The performance of this novel workflow is exemplified in the case of monosaccharides (anomers) and disaccharides (regioisomers) standards. We report that the LC-MS-IRMPD approach offers a robust advanced MS diagnostic of mixtures of isomers, including carbohydrate anomers, which is critical for carbohydrate sequencing. Our results also explain the bimodal character generally observed in LC chromatograms of carbohydrates. More generally, this multidimensional analytical strategy opens the gateway to rapid identification of molecular isoforms with potential application in the "omics" fields.

11.
Nat Commun ; 8(1): 973, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042546

RESUMO

Deciphering the carbohydrate alphabet is problematic due to its unique complexity among biomolecules. Strikingly, routine sequencing technologies-which are available for proteins and DNA and have revolutionised biology-do not exist for carbohydrates. This lack of structural tools is identified as a crucial bottleneck, limiting the full development of glycosciences and their considerable potential impact for the society. In this context, establishing generic carbohydrate sequencing methods is both a major scientific challenge and a strategic priority. Here we show that a hybrid analytical approach integrating molecular spectroscopy with mass spectrometry provides an adequate metric to resolve carbohydrate isomerisms, i.e the monosaccharide content, anomeric configuration, regiochemistry and stereochemistry of the glycosidic linkage. On the basis of the spectroscopic discrimination of MS fragments, we report the unexpected demonstration of the anomeric memory of the glycosidic bond upon fragmentation. This remarkable property is applied to de novo sequencing of underivatized oligosaccharides.Establishing generic carbohydrate sequencing methods is both a major scientific challenge and a strategic priority. Here the authors show a hybrid analytical approach integrating molecular spectroscopy and mass spectrometry to resolve carbohydrate isomerism, anomeric configuration, regiochemistry and stereochemistry.


Assuntos
Configuração de Carboidratos , Glicosídeos/química , Espectrometria de Massas/métodos , Oligossacarídeos/química , Análise de Sequência/métodos , Sequência de Carboidratos , Isomerismo
12.
J Phys Chem A ; 121(23): 4404-4411, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28492322

RESUMO

It is demonstrated, using tandem mass spectrometry and radio frequency ion trap, that the adsorption of a H atom on the gold dimer cation, Au2H+, prevents its dissociation and allows for adsorption of CO. Reaction kinetics are measured by employing a radio frequency ion trap, where Au2+ and CO interact for a given reaction time. The effect of a hydrogen atom is evaluated by comparing reaction rate constants measured for Au2+ and Au2H+. The theoretical results for the adsorption of CO molecules and their reaction characteristics with Au2+ and Au2H+ are found to agree with the experimental findings. The joint investigations provide insights into hydrogen atom adsorption effects and consequent reaction mechanisms.

13.
Glycoconj J ; 34(3): 421-425, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27924423

RESUMO

We report an original MS-based hyphenated method for the elucidation of the epimerization in GAG fragments. It consists of measuring simultaneously the MS/MS spectrum and the gas phase IR spectrum to gain direct structural information. This is possible using a customized MS instrument, modified to allow injection of a tunable IR laser inside of the instrument for in situ spectroscopy of trapped ions. The proof of principle of this approach is performed in the case of a hyaluronic acid tetrasaccharide standard. In addition, we provide the reference IR fingerprint of glucuronic and Iduronic monosaccharide standards. Remarkably, we show that the gas phase IR fingerprint of reference hexuronic acid monosaccharides proves to be transposable to oligosaccharides. Therefore, the method presented here is predictive and allows structural elucidation of unknown GAG fragments, even in the absence of referenced standards.


Assuntos
Ácido Hialurônico/isolamento & purificação , Ácido Idurônico/isolamento & purificação , Espectrofotometria Infravermelho/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Hialurônico/química , Ácido Idurônico/química , Monossacarídeos/química , Oligossacarídeos/química , Soluções , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/normas , Espectrometria de Massas em Tandem/normas
14.
J Mol Model ; 22(11): 285, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27807714

RESUMO

We have developed and tested a new time-effective and accurate hybrid QM//MM generalized second-order vibrational perturbation theory (GVPT2) approach. In this approach, two different levels of theory were used, a high level one (DFT) for computing the harmonic spectrum and a lower fast one (Molecular Mechanic) for the anharmonic corrections. To validate our approach, we used B2PLYP/def2-TZVPP as the high-level method, and the MMFF94 method for the anharmonic corrections as the low-level method. The calculations were carried out on 28 molecules (containing from 2 to 47 atoms) covering a broad range of vibrational modes present in organic molecules. We find that this fast hybrid method reproduces the experimental frequencies with a very good accuracy for organic and bio-molecules. The root-mean-square deviation (RMSD) is about 27 cm -1 while the full B3LYP/SNSD simulation reproduces the experimental values with a RMSD of about 41 cm -1. Concerning the computational time, the hybrid B2PLYP//MMFF94 approach considerably outperforms the full B3LYP/SNSD: for the larger molecule of our set (a dipeptide containing 47 atoms), the anharmonic corrections are 2300 times faster using hybrid MMFF94 rather than full B3LYP, which represents an additional computation time to the harmonic calculation of merely 9 %, instead of 32100 % with the full B3LYP approach. This time-effective and accurate alternative to the traditional GVPT2 approach will allow the spectroscopy community to explore anharmonic effects in larger biomolecules, which are generally unaffordable.

15.
J Chem Phys ; 143(4): 044308, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233130

RESUMO

Two-colour polarization labelling experiments have been used to explore the excitation spectrum of the rubidium dimer in the region 25,500-27,000 cm(-1), probing two mutually interacting states, identified from ab initio calculations as the 5(1)Σu(+) and 5(1)Πu states whose atomic dissociation products are Rb(5s) + Rb(5d). Treating the rather irregular progressions observed in the excitation spectra as transitions to single states with (numerous) local perturbations, we propose spectroscopic parameters and potential energy curves to describe the investigated levels. Observations cover more than 20 vibrational levels in the inner minima of both the 5(1)Πu and 5(1)Σu(+) states. Analysis was guided by ab initio calculations performed to describe the (1,3)Λg,u electronic states of Rb2 up to the Rb(5s) + Rb(5f) atomic asymptote. The theoretical potential energy curves are given in ASCII format in an electronic supplement to this paper.

16.
J Phys Chem A ; 119(33): 8944-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26214730

RESUMO

A predictive model for nanoparticle nucleation has not yet been successfully achieved. Classical nucleation theory fails because the atomistic nature of the seed has to be considered. Indeed, geometrical structure as well as stoichiometry do not always match the bulk values. We present a fully microscopic approach based on a first-principle study of aluminum oxide clusters. We calculated stable structures of AlxOy and their associated thermodynamic properties. From these data, the chemical composition of a gas composed of aluminum and oxygen atoms can be calculated as a function of temperature, pressure, and aluminum to oxygen ratio. We demonstrate the accuracy of this approach in reproducing experimental results obtained with time-resolved spectroscopy of a laser-induced plasma from an Al2O3 target. We thus extended the calculation to lower temperatures, i.e., longer time scales, to propose a scenario of composition gas evolution leading to the first alumina seeds.

17.
Phys Chem Chem Phys ; 17(39): 25705-13, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26119005

RESUMO

Mid-infrared spectroscopy coupled with mass spectrometry is an appealing tool for the sequencing and structural elucidation of functional modifications in biopolymers, as it offers direct spectroscopic identification of the functionality where the traditional mass spectrometric approach is insufficient. Whereas the gas phase vibrational spectroscopy of peptides (and to a lesser extent saccharides) has been widely investigated, sulfation has attracted much less attention, despite its prevalence in natural polymers. The simulation of the vibrational spectra of such functionalized compounds is however notoriously challenging, which impairs the interpretation of spectroscopic data in terms of structure. Driven by a striking case of such a failure for a sulfated glycosaminoglycan fragment, we elaborate on an original hybrid GVPT2 anharmonic approach. This strategy offers a significantly improved accuracy in the description of the sulfate modes, without the recourse to empirical scaling factors, and with a greatly reduced computational cost which is otherwise prohibitive for molecules of this size. Alternatively, we propose a selection of reasonably accurate harmonic methods with adequate scaling factors optimized on a set of benchmark compounds.


Assuntos
Glucosamina/química , Espectrofotometria Infravermelho , Simulação por Computador , Dimetil Sulfóxido/química , Modelos Moleculares , Teoria Quântica , Espectrofotometria Infravermelho/métodos , Sulfatos/química , Sulfonas/química , Dióxido de Enxofre/química
18.
J Phys Chem A ; 118(46): 11033-46, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25350349

RESUMO

Using LR-TDDFT, we calculated the 0-0 energies of 15 small radicals for which the experimental values in gas phase are available. We used 17 functionals. It turned out that B3LYP, M06-2X, ωB97X-D, CAM-B3LYP, and HSE06 functionals are the most effective functionals in terms of root-mean-square and average unsigned deviation. Using the standard value (0.47 a0(-1)) of the attenuation parameter ω, the long-range-corrected LC-GGA functionals give poor results. However, the LC-PBE with ω = 0.25 a0(-1) give a performance similar to that of B3LYP. Taking into account zero-point correction improves the results, but the contribution of adiabatic correction is more important than that due to the vibration. The vertical approximation is certainly not recommended. An adiabatic calculation seems to give a good compromise between computing time (and resources) and reliability of the results for most of molecules investigated in this work.

19.
Phys Chem Chem Phys ; 16(40): 22131-8, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25211353

RESUMO

An original application of the coupling of mass spectrometry with vibrational spectroscopy, used for the first time to discriminate isobaric bioactive saccharides with sulfate and phosphate functional modifications, is presented. Whereas their nominal masses and fragmentation patterns are undifferentiated by sole mass spectrometry, their distinctive OH stretching modes at 3595 cm(-1) and 3666 cm(-1), respectively, provide a reliable spectroscopic diagnostic for distinguishing their sulfate or phosphate functionalization. A detailed analysis of the 6-sulfated and 6-phosphated d-glucosamine conformations is presented, together with theoretical scaled harmonic spectra and anharmonic spectra (VPT2 and DFT-based molecular dynamics simulations). Strong anharmonic effects are observed in the case of the phosphated species, resulting in a dramatic enhancement of its phosphate diagnostic mode.


Assuntos
Glucosamina/análogos & derivados , Glucosamina/química , Glucose-6-Fosfato/análogos & derivados , Gases/química , Glucose-6-Fosfato/química , Espectrometria de Massas , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho
20.
J Am Soc Mass Spectrom ; 24(8): 1271-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23722725

RESUMO

We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.


Assuntos
Polissacarídeos/análise , Sequência de Carboidratos , Glicosídeos/química , Isomerismo , Dados de Sequência Molecular , Fotoquímica , Espectrofotometria Ultravioleta , Síncrotrons , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA