Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 256: 106390, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709615

RESUMO

Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting. Because of distinct mechanisms, aspects of photosensitization (change in compound energy state) and photomodification (change in compound structure) are addressed separately, and practical applications in laboratory and field studies and advances in predictive modeling are discussed. One goal for developing standardized testing protocols is to support lab-to-field extrapolations, which in the case of petroleum substances often requires a modeling framework to account for differential physicochemical properties of the constituents. Recommendations are provided to promote greater standardization of laboratory studies on photo-induced toxicity, thus facilitating comparisons across studies and generating data needed to improve models used in oil spill science.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Petróleo/toxicidade , Petróleo/análise , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos , Poluição por Petróleo/análise
2.
Environ Toxicol Chem ; 41(5): 1311-1318, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156233

RESUMO

Chemical herding agents are surfactant mixtures used to coalesce spilled oil and increase slick thickness to facilitate mechanical recovery or in situ burning. Only two herders are currently listed on the United States' National Oil and Hazardous Substances Pollution Contingency Plan or National Contingency Plan product schedule for potential use in spill response: the surface collecting agents Siltech OP-40™ and ThickSlick 6535™. Toxicity data for spill response agents are frequently available only for two estuarine species, mysid shrimp (Americamysis bahia) and inland silversides (Menidia beryllina), and are particularly limited for herding agents. Toxicity can vary over several orders of magnitude across product type and species, even within specific categories of spill response agents. Seven aquatic species were tested with both Siltech OP-40™ and ThickSlick 6535™ to evaluate acute herder toxicity and relative species sensitivity. The toxicity assessment included: acute tests with A. bahia and M. beryllina, the freshwater crustacean Ceriodaphina dubia, and the freshwater fish Pimephales promelas; development of the echinoderm Arbacia unctulate; and growth of a freshwater alga Raphidocelis subcapitata and marine alga Dunaliella tertiolecta. Siltech acute toxicity values ranged from 1.1 to 32.8 ppm. ThickSlick acute toxicity values ranged from 2.2 to 126.4 ppm. The results of present study show greater toxicity of Siltech compared to ThickSlick with estimated acute hazard concentrations intended to provide 95% species protection of 1.1 and 3.6 ppm, respectively, on empirical data and 0.64 and 3.3 ppm, respectively, with the addition of interspecies correlation data. The present study provides a greater understanding of species sensitivity of these two oil spill response agents. Environ Toxicol Chem 2022;41:1311-1318. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Crustáceos/fisiologia , Peixes , Poluição por Petróleo/análise , Tensoativos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 40(4): 1062-1074, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33252787

RESUMO

There is evidence that the combination of polycyclic aromatic hydrocarbons (PAHs) released in the Deepwater Horizon oil spill impairs the glucocorticoid stress response of vertebrates in the Gulf of Mexico, but the mechanisms are unclear. We hypothesized that inhibition of cortisol release may be due to 1) overstimulation of the hypothalamic-pituitary-inter-renal (HPI) axis, or 2) an inhibition of cortisol biosynthesis through PAH activation of the aryl hydrocarbon receptor (AhR). Using a flow-through system, Gulf toadfish (Opsanus beta) were continuously exposed to control conditions or one of 3 environmentally relevant concentrations of PAHs from Deepwater Horizon oil (∑PAH50 = 0-3 µg L-1 ) for up to 7 d. One group of toadfish was then exposed to a recovery period for up to 7 d. No changes in corticotrophin-releasing factor mRNA expression, adrenocorticotropic hormone (ACTH), or pituitary mass suggested that overstimulation of the HPI axis was not a factor. The AhR activation was measured by an elevation of cytochrome P4501A1 (CYP1A) mRNA expression within the HPI axis in fish exposed to high PAH concentrations; however, CYP1A was no longer induced after 3 d of recovery in any of the tissues. At 7 d of recovery, there was an impairment of cortisol release in response to an additional simulated predator chase that does not appear to be due to changes in the mRNA expression of the kidney steroidogenic pathway proteins steroidogenic acute regulatory protein, cytochrome P450 side chain cleavage, and 11ß-hydroxylase. Future analyses are needed to determine whether the stress response impairment is due to cholesterol availability and/or down-regulation of the melanocortin 2 receptor. Environ Toxicol Chem 2021;40:1062-1074. © 2020 SETAC.


Assuntos
Batracoidiformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Golfo do México , Hidrocortisona , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 40(4): 1075-1086, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33326153

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be responsible for a variety of deleterious effects on organisms. These adverse outcomes are relatively well studied, but at concentrations rarely found in the environment. Among the documented effects of sublethal acute PAH exposure are reductions in osmoregulatory capacity and immune function, and changes in the function of critical metabolic organs such as the liver. Gulf toadfish (Opsanus beta) were exposed to control seawater (0.006 µg tPAH50 /L) or water accommodated fractions of Deepwater Horizon spill oil diluted to 3 flow-through exposure regimes (0.009, 0.059, and 2.82 µg tPAH50 /L) for 7 d, with a recovery period of equal duration. We hypothesized that these chronic exposures would induce the aryl hydrocarbon receptor (AhR)-mediated pathways and result in significant impacts on markers of osmoregulatory, immune, and metabolic function. We further hypothesized that measurable reversal of these impacts would be observed during the recovery period. Our results indicate that activation of cytochrome P 450 (CYP)1A1 was achieved during exposure and reversed during the recovery phase. The only significant deviations from controls measured were a reduction in plasma glucose in fish exposed to medium and high levels of PAH after 7 d of exposure and a reduction in plasma osmolality fish exposed to high levels of PAHs after 7 d of recovery, when CYP1A1 messenger (m)RNA levels had returned to control levels. Our study illustrates a disconnect between the activation of CYP1A1 in response to environmentally realistic PAHs concentrations and several physiological endpoints and supports the idea that the AhR might not be associated with mediating osmoregulatory, immune, and metabolic changes in Gulf toadfish. Environ Toxicol Chem 2021;40:1075-1086. © 2020 SETAC.


Assuntos
Batracoidiformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Golfo do México , Fígado/química , Petróleo/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Technol ; 54(10): 6254-6261, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32310642

RESUMO

Benthic organisms may be exposed to polycyclic aromatic hydrocarbons (PAHs) in marine sediments as the result of oil spills. PAH photoinduced toxicity, which has been documented in a wide range of early life stage (ELS) aquatic biota, is a phenomenon by which ultraviolet (UV) radiation potentiates the toxicity of photodynamic PAHs (often leading to mortality). Fiddler crabs (Uca longisignalis) are important ecosystem engineers that influence biogeochemical cycles via burrowing. As gravid females burrow, their eggs may bioaccumulate PAHs from contaminated sediments, leading to in ovo exposure. Consequently, free-swimming larvae exposed to intense UV may be at risk for photoinduced toxicity. In the present study, mature fiddler crabs were bred on oiled sediments contaminated via simulated tidal flux. Gravid females were transferred to clean water after 10 days, and larvae were collected at hatch. While in ovo exposures to oil alone did not affect survival, offspring that were subsequently exposed to full spectrum sunlight in clean water experienced significant mortality that corresponded with in ovo exposures to sediments containing ≥1455 µg/kg tPAH50. Results presented here provide evidence for the potential of photoinduced toxicity to occur in benthic organisms with free-swimming early life stages.


Assuntos
Braquiúros , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Feminino , Sedimentos Geológicos , Plâncton
6.
Sci Adv ; 6(7): eaaw8863, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32095516

RESUMO

Major oil spills are catastrophic events that immensely affect the environment and society, yet determining their spatial extent is a highly complex task. During the Deepwater Horizon (DWH) blowout, ~149,000 km2 of the Gulf of Mexico (GoM) was covered by oil slicks and vast areas of the Gulf were closed for fishing. Yet, the satellite footprint does not necessarily capture the entire oil spill extent. Here, we use in situ observations and oil spill transport modeling to examine the full extent of the DWH spill, focusing on toxic-to-biota (i.e., marine organisms) oil concentration ranges. We demonstrate that large areas of the GoM were exposed to invisible and toxic oil that extended beyond the boundaries of the satellite footprint and the fishery closures. With a global increase in petroleum production-related activities, a careful assessment of oil spills' full extent is necessary to maximize environmental and public safety.

7.
Sci Total Environ ; 659: 950-962, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096425

RESUMO

Lake Saint-Louis, a shallow fluvial lake near the western tip of the island of Montreal, QC, Canada is an important spawning ground for many species of fish. Sediments in certain areas of the lake are known to be contaminated with high levels of metals and legacy organic chemicals. To improve our understanding of risk to native fish populations, we conducted a study evaluating levels of sediment contamination and potential effects on early life stage fish. Concentrations of PAHs, PCBs, PCDDs and PCDFs were several orders of magnitude higher at two industrial sites (B1 and B2) than at a nearby reference site (IP). Concentrations of 32 metals and metalloids were at least 5-fold higher at B1 and B2 than at IP. Moreover, all available interim sediment quality guidelines (ISQGs) were exceeded at the two contaminated sites, while none were exceeded at the reference site. Biological effects were evaluated using a sediment contact assay. Zebrafish (Danio rerio) embryos were exposed to clean water (control), or to sediment from IP, B1, and B2 until 120 h post fertilization (hpf). Mortality was significantly elevated in fish exposed to the B1, but not the B2 sediment. The frequency of deformities increased with increasing contamination, but this trend was not statistically significant (p > 0.05). Genes that are implicated in the response to PAHs, PCBs, dioxins and furans (cyp1a, cyp1b1, ahr2) were significantly elevated in the 120 hpf larvae exposed to the B1 and B2 sediments. Global DNA methylation, and mRNA expression of genes related to oxidative stress (maft, cat, hmox1, sod2), embryonic development (bmp2b, baf60c), metal exposure (mt2), and DNA repair (gadd45b) were unaffected. Our results suggest that the Beauharnois sector of Lake Saint-Louis is poor quality spawning habitat due to high levels of contamination, and the potential for harmful effects on early life stage fish.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Lagos/química , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Quebeque , Testes de Toxicidade , Peixe-Zebra/metabolismo
8.
Ecotoxicology ; 27(4): 440-447, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29464533

RESUMO

The 2010 explosion of the Deepwater Horizon (DWH) oil rig led to the release of millions of barrels of oil in the Gulf of Mexico. Oil in aquatic ecosystems exerts toxicity through multiple mechanisms, including photo-induced toxicity following co-exposure with UV radiation. The timing and location of the spill coincided with both fiddler crab reproduction and peak yearly UV intensities, putting early life stage fiddler crabs at risk of injury due to photo-induced toxicity. The present study assessed sensitivity of fiddler crab larvae to photo-induced toxicity during co-exposure to a range of environmentally relevant dilutions of high-energy water accommodated fractions of DWH oil, and either <10, 50, or 100% ambient sunlight, achieved with filters that allowed for variable UV penetration. Solar exposures (duration: 7-h per day) were conducted for two consecutive days, with a dark recovery period (duration: 17-h) in between. Survival was significantly decreased in treatments the presence of >10% UV and relatively low concentrations of oil. Results of the present study indicate fiddler crab larvae are sensitive to photo-induced toxicity in the presence of DWH oil. These results are of concern, as fiddler crabs play an important role as ecosystem engineers, modulating sediment biogeochemical processes via burrowing action. Furthermore, they occupy an important place in the food web in the Gulf of Mexico.


Assuntos
Braquiúros/efeitos dos fármacos , Braquiúros/efeitos da radiação , Petróleo/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Braquiúros/crescimento & desenvolvimento , Golfo do México , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Poluição por Petróleo/efeitos adversos
9.
Environ Toxicol Chem ; 37(6): 1679-1687, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29473712

RESUMO

Millions of barrels of oil were released into the Gulf of Mexico following the 2010 explosion of the Deepwater Horizon oil rig. Polycyclic aromatic hydrocarbons (PAHs) are toxic components of crude oil, which may become more toxic in the presence of ultraviolet (UV) radiation, a phenomenon known as photo-induced toxicity. The Deepwater Horizon spill impacted offshore and estuarine sites, where biota may be co-exposed to UV and PAHs. Penetration of UV into the water column is affected by site-specific factors. Therefore, measurements and/or estimations of UV are necessary when one is assessing the risk to biota posed by photo-induced toxicity. We describe how estimates of incident UV were determined for the area impacted by the Deepwater Horizon oil spill, using monitoring data from radiometers near the spill, in conjunction with reference spectra characterizing the composition of solar radiation. Furthermore, we provide UV attenuation coefficients for both near- and offshore sites in the Gulf of Mexico. These estimates are specific to the time and location of the spill, and fall within the range of intensities utilized during photo-induced toxicity tests performed in support of the Deepwater Horizon Natural Resource Damage Assessment (NRDA). These data further validate the methodologies and findings of phototoxicity tests included in the Deepwater Horizon NRDA, while underscoring the importance of considering UV exposure when assessing possible risks following oil spills. Environ Toxicol Chem 2018;37:1679-1687. © 2018 SETAC.


Assuntos
Poluição por Petróleo , Raios Ultravioleta , Monitoramento Ambiental/métodos , Golfo do México , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade
10.
Environ Toxicol Chem ; 36(6): 1661-1666, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27925281

RESUMO

Nano-titanium dioxide (TiO2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO2 is used in ultraviolet (UV) screening applications, whereas anatase TiO2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Animais , Substâncias Húmicas , Luz , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio
11.
Environ Toxicol Chem ; 36(6): 1592-1598, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27859534

RESUMO

The Deepwater Horizon oil spill in 2010 overlapped with the spawning of many pelagic fish species in the Gulf of Mexico, including mahi-mahi (Coryphaena hippurus). Polycyclic aromatic hydrocarbons (PAHs) released during the spill have been shown to cause photo-induced toxicity under ultraviolet (UV) radiation. In the present study, mahi-mahi embryos were exposed to high-energy water accommodated fractions of source and naturally weathered oils for up to 48 h. The timing of co-exposure with UV radiation varied between an early development exposure for 8 h or a late development exposure for 8 h. The UV co-exposure had a photo-induced toxic effect on hatching success for all oil types and exposure scenarios. A more sensitive developmental window to photo-induced toxicity was observed when UV exposure occurred late in development. Source Oil B was over 6-fold more toxic, and Massachusetts source oil was 1.6-fold more toxic when the embryos were co-exposed to UV light late in development. Furthermore, weathered oil from the surface co-exposure with UV late in development resulted in bradycardia in the mahi-mahi. The present study provides evidence that the developmental window when UV co-exposure occurs has a significant effect on the degree of photo-induced toxicity of oil and that UV co-exposure may exacerbate long-term cardiac effects in developing fish. Environ Toxicol Chem 2017;36:1592-1598. © 2016 SETAC.


Assuntos
Embrião não Mamífero/efeitos da radiação , Perciformes/embriologia , Petróleo/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27756692

RESUMO

Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems.


Assuntos
Ecossistema , Processos Fotoquímicos , Luz Solar/efeitos adversos , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/métodos , Medição de Risco
13.
Environ Toxicol Chem ; 34(9): 2061-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26198885

RESUMO

The 2010 Deepwater Horizon oil spill resulted in the accidental release of approximately 700 million L of crude oil into the Gulf of Mexico. Photo-induced toxicity after co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab are an important commercial and ecological resource in the Gulf of Mexico, and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. The goal of the present study was to examine the sensitivity of early lifestage blue crab (Callinectes sapidus) zoea to slick oil collected during the Deepwater Horizon spill. Blue crab zoea were exposed to 1 of several dilutions of water accommodated fractions from 1 of 2 sources of oil and gradations of natural sunlight in a factorial design. Two 7-h solar exposures were carried out with a recovery period (dark) in between. Survival was found to be UV- and PAH-dependent. Toxicity was observed within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These findings indicate that early lifestage blue crab are sensitive to photo-induced toxicity from Deepwater Horizon slick oil.


Assuntos
Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Gasosa-Espectrometria de Massas , Golfo do México , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Petróleo/análise , Fotólise/efeitos da radiação , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
14.
Ecotoxicol Environ Saf ; 74(7): 1839-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21764452

RESUMO

Relatively little is known about the potential impacts of engineered nanoparticles on aquatic biota. Particularly relevant to aquatic ecosystems are those particles, which display increased solubility either through specialized coatings or through an ability to interact with water column constituents such as natural organic matter (NOM). Previous research has indicated that grazing zooplankton (Daphnia magna) are able to ingest lipid-coated single-walled carbon nanotubes (SWNTs) from the water column during their normal feeding behavior (Roberts et al., 2007). Acute mortality was observed only at high concentrations (>5mg/L). In this research NOM was used in place of a surfactant to stabilize suspensions. Water chemistry (ionic strength, hardness, and pH) has been shown to alter the behavior of NOM in natural systems. We hypothesized that these same variables may also affect the toxicity of multi-walled carbon nanotubes (MWNT) stabilized in NOM. The purpose of this research was to examine the potential for sublethal effects to occur following exposure to multi-walled carbon nanotubes suspended in NOM and to determine whether those effects vary with pH alterations.


Assuntos
Daphnia/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/fisiologia , Concentração de Íons de Hidrogênio , Lipídeos/farmacologia , Compostos Orgânicos/química , Reprodução , Solubilidade , Suspensões , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...