Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(22): 12897-12905, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788223

RESUMO

Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7-fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re-establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass-fire cycles may limit these benefits.

2.
Evolution ; 66(4): 985-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22486684

RESUMO

Gametophytic apomixis is a common form of asexual reproduction in plants. Virtually all gametophytic apomicts are polyploids, and some view polyploidy as a prerequisite for the transition to apomixis. However, any causal link between apomixis and polyploidy is complicated by the fact that most apomictic polyploids are allopolyploids, leading some to speculate that hybridization, rather than polyploidy, enables apomixis. Diploid apomixis presents a rare opportunity to isolate the role of hybridization, and a number of diploid apomicts have been documented in the genus Boechera (Brassicaceae). Here, we present the results of a microsatellite study of 1393 morphologically and geographically diverse diploid individuals, evaluating the hypothesis that diploid Boechera apomicts are hybrids. This genus-wide dataset was made possible by the applicability of a core set of microsatellite loci in 69 of the 70 diploid Boechera species and by our ability to successfully genotype herbarium specimens of widely varying ages. With few exceptions, diploid apomicts exhibited markedly high levels of heterozygosity resulting from the combination of disparate genomes. This strongly suggests that most apomictic diploid Boechera lineages are of hybrid origin, and that the genomic consequences of hybridization allow for the transition to gametophytic apomixis in this genus.


Assuntos
Apomixia , Brassicaceae/genética , Diploide , Hibridização Genética , Evolução Biológica , Brassicaceae/fisiologia , Genótipo , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA