Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050672

RESUMO

The advent of Artificial Intelligence (AI) and the Internet of Things (IoT) have recently created previously unimaginable opportunities for boosting clinical and patient services, reducing costs and improving community health. Yet, a fundamental challenge that the modern healthcare management system faces is storing and securely transferring data. Therefore, this research proposes a novel Lionized remora optimization-based serpent (LRO-S) encryption method to encrypt sensitive data and reduce privacy breaches and cyber-attacks from unauthorized users and hackers. The LRO-S method is the combination of hybrid metaheuristic optimization and improved security algorithm. The fitness functions of lion and remora are combined to create a new algorithm for security key generation, which is provided to the serpent encryption algorithm. The LRO-S technique encrypts sensitive patient data before storing it in the cloud. The primary goal of this study is to improve the safety and adaptability of medical professionals' access to cloud-based patient-sensitive data more securely. The experiment's findings suggest that the secret keys generated are sufficiently random and one of a kind to provide adequate protection for the data stored in modern healthcare management systems. The proposed method minimizes the time needed to encrypt and decrypt data and improves privacy standards. This study found that the suggested technique outperformed previous techniques in terms of reducing execution time and is cost-effective.


Assuntos
Inteligência Artificial , Segurança Computacional , Humanos , Algoritmos , Privacidade , Atenção à Saúde
2.
Comput Intell Neurosci ; 2022: 4048197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156966

RESUMO

A large component of the Health Information Systems now comprises numerous independent apps created in the past that need to be merged to provide a more uniform service. In addition to affecting the Intelligent Health Board Functionality and dependability, the quality of these additional apps may also have an impact. A critical characteristic of the SHS's management and upkeep is the SHS's reliance on the real benefits provided to it. In speaking, an HMIS (Healthcare Management Information System) is a computer-based device that benefits medical practitioners to perform their duties more efficiently by coordinating all of their data. Even though these systems are widely used by most of the world, there is a significant need to comprehend these technologies and indeed the potential they provide. Healthcare data warehouses in Saudi Arabia have evolved through time, and this research examines how key service improvements in Saudi present varied viewpoints on how premium initiative help may be attained in health as well as how this could be done. When it comes to understanding how different types of medical professionals interact with healthcare systems throughout history, researchers developed stages of the maturity model.


Assuntos
Inteligência Artificial , Privacidade , Atenção à Saúde , Hospitais , Arábia Saudita
3.
Chemosphere ; 307(Pt 3): 136044, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35977573

RESUMO

The growth and implementation of biofuels and bioenergy conversion technologies play an important part in the production of sustainable and renewable energy resources in the upcoming years. Recycling sources from waste could efficiently ease the risk of world source strain. The waste classification was a good resolution for separating the waste from the recycled objects. It is inefficient and expensive to rely solely on manual classification of garbage and recycling sources. Convolutional neural networks (CNNs) have lately been used to classify recyclable waste, and this is the primary way for recycling the waste. This study presents a recycling waste classification using emperor penguin optimizer with deep learning (RWC-EPODL) model for bioenergy production. RWC-EPODL model focuses on recycling waste materials recognition and classification. When it comes to detecting and classifying trash, the RWC-EPODL model uses two stages. At the initial stage, the RWC-EPODL model uses AX-RetinaNet model for the recognition of waste objects. In addition, Bayesian optimization (BO) algorithm is applied as hyperparameter optimizer of the AX-RetinaNet model. Following the EPO algorithm with a stacked auto-encoder (SAE) model, the EPO algorithm is used to fine-tune the parameters of the SAE technique for trash classification. The RWC-EPODL model's experimental validation is examined through a number of studies. The RWC-EPODL approach has a 98.96 percent success rate. The comparative result analysis reported the better performance of the RWC-EPODL model over recent approaches.


Assuntos
Aprendizado Profundo , Spheniscidae , Gerenciamento de Resíduos , Animais , Teorema de Bayes , Biocombustíveis , Reciclagem/métodos , Gerenciamento de Resíduos/métodos
4.
Comput Intell Neurosci ; 2022: 5061059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35510059

RESUMO

Malware has grown in popularity as a method of conducting cyber assaults in former decades as a result of numerous new deception methods employed by malware. To preserve networks, information, and intelligence, malware must be detected as soon as feasible. This article compares various attribute extraction techniques with distinct machine learning algorithms for static malware classification and detection. The findings indicated that merging PCA attribute extraction and SVM classifier results in the highest correct rate with the fewest possible attributes, and this paper discusses sophisticated malware, their detection techniques, and how and where to defend systems and data from malware attacks. Overall, 96% the proposed method determines the malware more accurately than the existing methods.


Assuntos
Algoritmos , Aprendizado de Máquina
5.
Comput Intell Neurosci ; 2022: 5066147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607469

RESUMO

The estimated 30 million children and adults are suffering with diabetes across the world. A person with diabetes can recognize several symptoms, and it can also be tested using retina image as diabetes also affects the human eye. The doctor is usually able to detect retinal changes quickly and can help prevent vision loss. Therefore, regular eye examinations are very important. Diabetes is a chronic disease that affects various parts of the human body including the retina. It can also be considered as major cause for blindness in developed countries. This paper deals with classification of retinal image into diabetes or not with the help of deep learning algorithms and architecture. Hence, deep learning is beneficial for classification of medical images specifically such a complex image of human retina. A large number of image data are considered throughout the project on which classification is performed by using binary classifier. On applying certain deep learning algorithms, model results into the training accuracy of 96.68% and validation accuracy of 66.82%. Diabetic retinopathy can be considered as an effective and efficient method for diabetes detection.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Criança , Diabetes Mellitus/diagnóstico , Retinopatia Diabética/diagnóstico , Face , Humanos , Retina
6.
Chemosphere ; 303(Pt 1): 134960, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35580643

RESUMO

Recently, heavy metal air pollution has received significant interest in computing the total concentration of every toxic metal. Chemical fractionation of possibly toxic substances in airborne particles becomes a vital element. Among the primary and secondary air pollutants, airborne particulate matter (APM) received considerable internet among research communities owing to the adversative impact on human health. Hence, size distribution details of airborne heavy metals are important in assessing the adverse health effects over the globe. Recently, deep learning models have gained significant interest over the mathematical and statistical prediction models. In this view, this paper presents a novel arithmetic optimization algorithm (AOA) with multi-head attention based bidirectional long short-term memory (MABLSTM) model for predicting the size fractionated airborne particle bound metals. The proposed AOA-MABLSTM technique focuses on the forecasting of the size-fractionated airborne particle bound matter. The presented model intends to examine the concentration of PM and distinct sized-fractionated APM. The proposed model establishes MABLSTM based accurate predictive approaches for atmospheric heavy 83 metals is used for determining temporal trend of heavy metal. The proposed model employs AOA based hyperparameter tuning process to optimally tune the hyperparameters included in the MABLSTM method. To demonstrate the improved outcomes of the AOA-MABLSTM approach, a comparison study is performed with recent models. The stimulation results emphasized the betterment of the presented model over the other methods. Aluminum metal had an RMSE of 73.200 for AOA-MABLSTM. On Cu metal, the AOA-MABLSTM approach had an RMSE of 6.747. On Zn metal, the AOA-MABLSTM system lowered the RMSE by 45.250.


Assuntos
Poluentes Atmosféricos , Aprendizado Profundo , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Tamanho da Partícula , Material Particulado/análise
7.
Chemosphere ; 303(Pt 2): 135065, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35618070

RESUMO

Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods.


Assuntos
Aprendizado Profundo , Metais Pesados , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Metais Pesados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Environ Res ; 206: 112576, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921824

RESUMO

Air pollution is the existence of atmospheric chemicals damaging the health of human beings and other living organisms or damaging the environment or resources. Rarely any common contaminants are smog, nicotine, mold, yeast, biogas, or carbon dioxide. The paper will primarily observe, visualize and anticipate pollution levels. In particular, three algorithms of Artificial Intelligence were used to create good forecasting models and a predictive AQI model for 4 distinct gases: carbon dioxide, sulphur dioxide, nitrogen dioxide, and atmospheric particulate matter. Thus, in this paper, the Air Qualification Index is developed utilizing Linear Regression, Support Vector Regression, and the Gradient Boosted Decision Tree GBDT Ensembles model over the next 5 h and analyzes air qualities using various sensors. The hypothesized artificial intelligence models are evaluated to the Root Mean Squares Error, Mean Squared Error and Mean absolute error, depending upon the performance measurements and a lower error value model is chosen. Based on the algorithm of the Artificial Intelligent System, the level of 5 air pollutants like CO2, SO2, NO2, PM 2.5 and PM10 can be predicted immediately by integrating the observations with errors. It may be used to detect air quality from distance in large cities and can assist lower the degree of environmental pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Inteligência Artificial , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise
9.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517018

RESUMO

Data Streams create new challenges for fuzzy clustering algorithms, specifically Interval Type-2 Fuzzy C-Means (IT2FCM). One problem associated with IT2FCM is that it tends to be sensitive to initialization conditions and therefore, fails to return global optima. This problem has been addressed by optimizing IT2FCM using Ant Colony Optimization approach. However, IT2FCM-ACO obtain clusters for the whole dataset which is not suitable for clustering large streaming datasets that may be coming continuously and evolves with time. Thus, the clusters generated will also evolve with time. Additionally, the incoming data may not be available in memory all at once because of its size. Therefore, to encounter the challenges of a large data stream environment we propose improvising IT2FCM-ACO to generate clusters incrementally. The proposed algorithm produces clusters by determining appropriate cluster centers on a certain percentage of available datasets and then the obtained cluster centroids are combined with new incoming data points to generate another set of cluster centers. The process continues until all the data are scanned. The previous data points are released from memory which reduces time and space complexity. Thus, the proposed incremental method produces data partitions comparable to IT2FCM-ACO. The performance of the proposed method is evaluated on large real-life datasets. The results obtained from several fuzzy cluster validity index measures show the enhanced performance of the proposed method over other clustering algorithms. The proposed algorithm also improves upon the run time and produces excellent speed-ups for all datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...