Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(1): 012502, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841540

RESUMO

A near-threshold proton resonance in ^{11}B at E_{ex}=11.44±0.04 MeV is observed via the reaction ^{10}Be(d,n)^{11}Be→^{10}Be+p in inverse kinematics, measured with a beam of the radioactive isotope ^{10}Be. The resonance energy at E_{res}=211(40) keV is consistent with a proton signal observed by Ayyad et al. in the ß-delayed proton decay of ^{11}Be. By comparison to a distorted wave Born approximation calculation, a 0.27(6) spectroscopic factor is extracted and a tentative (ℓ=0) character is assigned for this resonance. The significant cross section in the proton-transfer (d,n) reaction, as well as the observation of its proton-decay signal, point to the threshold-resonance character of this state. The position of this state, its structure, and strong coupling to the s-wave continuum represent an ideal case to study quantum near-threshold many-body dynamics of unstable states. The presence of this state is an important step toward understanding the excessively large beta-delayed proton-decay branch of ^{11}Be.

2.
Phys Rev Lett ; 121(11): 112701, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265109

RESUMO

The ^{36}Ar(n,γ)^{37}Ar (t_{1/2}=35 d) and ^{38}Ar(n,γ)^{39}Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT∼47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the ^{37}Ar/^{36}Ar and ^{39}Ar/^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The ^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of ^{36}Ar and ^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of ^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak s process. The new production cross sections have implications also for the use of ^{37}Ar and ^{39}Ar as environmental tracers in the atmosphere and hydrosphere.

3.
Phys Rev Lett ; 119(7): 072701, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949677

RESUMO

The existence of ^{26}Al (t_{1/2}=7.17×10^{5} yr) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0^{+} isomer (^{26}Al^{m}), however, severely complicates the astrophysical calculations. We present for the first time a study of the ^{26}Al^{m}(d,p)^{27}Al reaction using an isomeric ^{26}Al beam. The selectivity of this reaction allowed the study of ℓ=0 transfers to T=1/2, and T=3/2 states in ^{27}Al. Mirror symmetry arguments were then used to constrain the ^{26}Al^{m}(p,γ)^{27}Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric ^{26}Al via radiative proton capture reactions, which is expected to dominate the destruction path of ^{26}Al^{m} in asymptotic giant branch stars, classical novae, and core collapse supernovae.

5.
Phys Rev Lett ; 114(25): 251102, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197115

RESUMO

Neutrons produced by the carbon fusion reaction (12)C((12)C,n)(23)Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction (12)C((12)C,p)(23)Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that (12)C((12)C,n)(23)Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s-process elements, as well as in the production of the important galactic γ-ray emitter (60)Fe.

6.
Phys Rev Lett ; 113(2): 022701, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062170

RESUMO

Measurements of the excitation function for the fusion of (24)Mg+(30)Si (Q=17.89 MeV)have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive-Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.

7.
Phys Rev Lett ; 112(19): 192701, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877935

RESUMO

The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems (10,14,15)C+(12)C using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities.

8.
Phys Rev Lett ; 112(15): 152701, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785033

RESUMO

The 1809-keV γ ray from the decay of (26)Al(g) is an important target for γ-ray astronomy. In the convective C/Ne burning shell of massive presupernova stars, the (23)Na(α,p)(26)Mg reaction directly influences the production of (26)Al. We have performed a direct measurement of the (23)Na(α,p)(26)Mg reaction cross section at the appropriate astrophysically important energies. The stellar rate calculated in the present work is larger than the recommended rate by nearly a factor of 40 and could strongly affect the production of (26)Al in massive stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...