Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 201: 207-215, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29753965

RESUMO

Laser-induced fluorescence (LIF), Raman spectroscopy and X-ray (XRF) fluorescence were used to study two frescoes at the S. Alexander catacombs complex, in Rome. LIF analysis has shown the presence of a transparent protective material probably deposited in previous restoration treatments and allowed to clearly distinguish the areas undergoing the current restoration process from the ones which still have to be treated. Raman and XRF analysis allowed to non-destructively characterizing most of the pictorial materials used for the artworks, including calcite (CaCO3), red ochre (Fe2O3), minium (Pb3O4), yellow ochre (α-FeOOH) and others. Therefore, thanks to the complementarity of the above-mentioned techniques, it was possible to obtain a detailed characterization of the studied frescoes. Finally, the whole ensemble of results constituted a valid tool to effectively plan the restoration of the frescoes.

2.
J Microsc ; 258(2): 127-39, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639642

RESUMO

In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single-shot soft X-ray contact microscopy is presented. High resolved X-ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X-ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid-state X-ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X-ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X-ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high-quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.


Assuntos
Fluoretos , Compostos de Lítio , Microscopia/métodos , Animais , Chlamydomonas/ultraestrutura , Cianobactérias/ultraestrutura , Lasers , Macrófagos/ultraestrutura , Camundongos , Células RAW 264.7 , Raios X
3.
Rev Sci Instrum ; 82(10): 106101, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047339

RESUMO

The scheme and construction of an electro-optical probe able to collect charge and detect optical emission from expanding dense partially ionized vapour clouds are reported. The instrument can be applied to phenomena such as dust impact ionization and solid target laser ablation. First, results of measurements of expanding plasma cloud formed upon ablating W target are presented. Use of the instrument in different experimental facilities, including tokamak, is discussed.

4.
Appl Radiat Isot ; 67(7-8 Suppl): S183-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19375336

RESUMO

We report on a new solid state dosimeter based on chemical vapor deposition (CVD) single crystal diamond fabricated at Roma "Tor Vergata" University laboratories. The dosimeter has been specifically designed for direct neutron dose measurements in boron neutron capture therapy (BNCT). The response to thermal neutrons of the proposed diamond dosimeter is directly due to (10)B and, therefore, the dosimeter response is directly proportional to the boron absorbed doses in BNCT. Two single crystal diamond detectors are fabricated in a p-type/intrinsic/metal configuration and are sandwiched together with a boron containing layer in between the metallic contacts (see Fig.1). Neutron irradiations were performed at the Frascati Neutron Generator (FNG) using the 2.5 MeV neutrons produced through the D(d,n)(3)He fusion reaction. Thermal neutrons were then produced by slowing down the 2.5 MeV neutrons using a cylindrical polymethylmethacrylate (PMMA) moderator. The diamond dosimeter was placed in the center of the moderator. The products of (10)B(n,alpha)Li nuclear reaction were collected simultaneously giving rise to a single peak. Stable performance, high reproducibility, high efficiency and good linearity were observed.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Nêutrons Rápidos/uso terapêutico , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/estatística & dados numéricos , Diamante , Desenho de Equipamento , Humanos , Isótopos/uso terapêutico , Itália , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Radiometria/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos
5.
J Microsc ; 229(Pt 3): 490-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18331500

RESUMO

In this work, we report a method to observe soft X-ray radiographs at nanoscale of various kind of samples, biological and metallic, stored in a thin layer of lithium fluoride, employing scanning near-field optical microscopy with an optical resolution that reaches 50 nm. Lithium fluoride material works as a novel image detector for X-ray nano-radiographs, due to the fact that extreme ultraviolet radiation and soft X-rays efficiently produce stable point defects emitting optically stimulated visible luminescence in a thin surface layer. The bi-dimensional distribution of the so-created defects depends on the local nanostructure of the investigated sample.


Assuntos
Fluoretos , Compostos de Lítio , Microscopia de Varredura por Sonda , Radiografia , Cristalização , Microscopia Confocal , Microscopia de Fluorescência , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Olea/ultraestrutura , Pólen/ultraestrutura , Radiografia/instrumentação , Radiografia/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA