Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815007

RESUMO

Alzheimer's disease (AD) is among the highly prevalent neurodegenerative disorder of the aging brain and is allied with cognitive and behavioral abnormalities. Unfortunately, there is very limited drug discovery for the effective management of AD, and the clinically approved drugs have limited efficacy. Consequently, there is an immediate demand for the development of new compounds that have the ability to act as multitarget-directed ligands (MTDLs). As major pathological targets of the disease, the current study aimed to investigate lead natural bioactive compounds including apigenin, epigallocatechin-3-gallate, berberine, curcumin, genistein, luteolin, quercetin, resveratrol for their inhibitory potentials against ß-amyloid cleaving enzyme-1 (BACE1) and monoamine oxidase-B (MAO-B) enzymes. The study compounds were docked against the target enzymes (MAO-B and BACE1) using MOE software and subsequent molecular dynamics simulations (MDS) studies. The molecular docking analysis revealed that these phytochemicals (MTDLs) showed good interactions with the target enzymes as compared to the reference inhibitors. Among these eight phytocompounds, the epigallocatechin-3-gallate compound was an active inhibitor against both drug targets, with the highest docking scores and good interactions with the active residues of the enzymes. Furthermore, the docking result of the active one inhibitor in complex with the target enzymes (epigallocatechin-3-gallate/BACE1, epigallocatechin-3-gallate/MAO-B, reference/BACE1 and reference/MAO-B) were further validated by MDS. According to the findings of our study, epigallocatechin-3-gallate has the potential to be a candidate for use in the treatment of neurological illnesses like AD. This compound has MTDL potential and may be exploited to create new compounds with disease-modifying features.Communicated by Ramaswamy H. Sarma.

2.
Microorganisms ; 11(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37894063

RESUMO

Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.

3.
J Biomol Struct Dyn ; : 1-20, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642974

RESUMO

Alzheimer's disease (AD) is a neurological disorder that progresses gradually but irreversibly leading to dementia and is difficult to prevent and treat. There is a considerable time window in which the progression of the disease can be intervened. Scientific advances were required to help the researchers to identify the effective methods for the prevention and treatment of disease. This research was designed to investigate potential mediators for the remedy of AD, five new carboxylate amide zinc complexes (AAZ9-AAZ13) were synthesized and characterized by spectroscopic and physicochemical techniques. The biological evaluation was carried out based on the cholinesterase inhibitory mechanism. The preparation methodology provided the effective synthesis of targeted moieties. The in vitro pharmacological activities were evaluated involving AChE/BChE inhibition and antioxidant potential. All synthesized compounds displayed activity against both enzymes in higher or comparable to the standard drug Galantamine, a reversible inhibitor but the results displayed by compound AAZ10 indicated IC50 of 0.0013 µM (AChE) and 0.061 µM (BChE) as high values for dual AChE/BChE inhibition with potent anti-oxidant results. Structure activity relationship (SAR) indicated that the potent activity of compound AAZ10 appeared due to the presence of nitro clusters at the ortho position of an aromatic ring. The potent synthesized compound AAZ10 was also explored for the in-vivo Anti-Alzheimer activity and anti-oxidant activity. Binding approaches of all synthesized compounds were revealed through molecular docking studies concerning binding pockets of enzymes that analyzed the best posture interaction with amino acid (AA) residues providing an appreciable understanding of enzyme inhibitory mechanisms. Results indicate that synthesized zinc (II) amide carboxylates can behave as an effective remedy in the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.

4.
Vaccines (Basel) ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37376459

RESUMO

Despite the effectiveness of current vaccines in reducing the spread and severity of SARS-CoV-2 infections, many people, including migrants, refugees, and foreign workers, are hesitant to be vaccinated. This systematic review and meta-analysis (SRMA) was conducted to determine the pooled prevalence estimate of the acceptance and hesitancy rates of the COVID-19 vaccine among these populations. A comprehensive search of the peer-reviewed literature indexed in PubMed, Scopus, Science Direct, and Web of Science databases was conducted. Initially, 797 potential records were identified, of which 19 articles met the inclusion criteria. A meta-analysis of proportions using data from 14 studies revealed that the overall acceptance rate of COVID vaccination among 29,152 subjects was 56.7% (95% CI: 44.9-68.5%), while the prevalence of vaccine hesitancy among 26,154 migrants reported in 12 studies was estimated to be 31.7% (95% CI: 44.9-68.5%). The acceptance rate for the COVID-19 vaccination first declined from 77.3% in 2020 to 52.9% in 2021 and then slightly increased to 56.1% in 2022. The most frequent factors influencing vaccine hesitancy were worries about vaccine efficacy and safety. Intensive vaccination campaigns should be implemented to raise vaccination awareness among migrants, which will increase the acceptance rate for the COVID-19 vaccine and result in herd immunity.

5.
Front Pharmacol ; 14: 1325184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348349

RESUMO

At the molecular level, several developmental signaling pathways, such as Wnt/ß-catenin, have been associated with the initiation and subsequent progression of prostate carcinomas. The present report elucidated the anti-cancerous attributes of an anthraquinone, aloe-emodin (AE), against androgen-independent human prostate cancer DU145 cells. The cytotoxicity profiling of AE showed that it exerted significant cytotoxic effects and increased lactose dehydrogenase levels in DU145 cells (p < 0.01 and p < 0.001). AE also induced considerable reactive oxygen species (ROS)-mediated oxidative stress, which escalated at higher AE concentrations of 20 and 25 µM. AE also efficiently instigated nuclear fragmentation and condensation concomitantly, followed by the activation of caspase-3 and -9 within DU145 cells. AE further reduced the viability of mitochondria with increased cytosolic cytochrome-c levels (p < 0.01 and p < 0.001) in DU145 cells. Importantly, AE exposure was also correlated with reduced Wnt2 and ß-catenin mRNA levels along with their target genes, including cyclin D1 and c-myc. Furthermore, the molecular mechanism of AE was evaluated by performing molecular docking studies with Wnt2 and ß-catenin. Evidently, AE exhibited good binding energy scores toward Wnt2 and ß-catenin comparable with their respective standards, CCT036477 (Wnt2 inhibitor) and FH535 (ß-catenin inhibitor). Thus, it may be considered that AE was competent in exerting anti-growth effects against DU145 androgen-independent prostate cancer cells plausibly by modulating the expression of Wnt/ß-catenin signaling.

6.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364232

RESUMO

Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.


Assuntos
Malus , Neoplasias , Animais , Humanos , Pectinas/farmacologia , Pectinas/uso terapêutico , Frutas , Neoplasias/prevenção & controle , Carboidratos da Dieta
7.
J Funct Biomater ; 13(4)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36278627

RESUMO

Oral cancer has a high mortality rate, which is mostly determined by the stage of the disease at the time of admission. Around half of all patients with oral cancer report with advanced illness. Hitherto, chemotherapy is preferred to treat oral cancer, but the emergence of resistance to anti-cancer drugs is likely to occur after a sequence of treatments. Curcumin is renowned for its anticancer potential but its marred water solubility and poor bioavailability limit its use in treating multidrug-resistant cancers. As part of this investigation, we prepared and characterized Curcumin nanomicelles (CUR-NMs) using DSPE-PEG-2000 and evaluated the anticancer properties of cisplatin-resistant cancer cell lines. The prepared CUR-NMs were sphere-shaped and unilamellar in structure, with a size of 32.60 ± 4.2 nm. CUR-NMs exhibited high entrapment efficiency (82.2%), entrapment content (147.96 µg/mL), and a mean zeta potential of -17.5ζ which is considered moderately stable. The cellular uptake and cytotoxicity studies revealed that CUR-NMs had significantly higher cytotoxicity and cellular uptake in cisplatin drug-resistant oral cancer cell lines and parental oral cancer cells compared to plain curcumin (CUR). The DAPI and FACS analysis corroborated a high percentage of apoptotic cells with CUR-NMs (31.14%) compared to neat CUR (19.72%) treatment. Conclusively, CUR-NMs can potentially be used as an alternative carrier system to improve the therapeutic effects of curcumin in the treatment of cisplatin-resistant human oral cancer.

8.
Oxid Med Cell Longev ; 2022: 2112956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757502

RESUMO

Ischemic heart disease (IHD) treatments and preventions by using plant extract and its phytochemical constituents have achieved considerable attention globally due to its cardioprotective effects. This study is aimed at investigating the cardioprotective and vascular effects of Fumaria indica (F. indica) crude extract on isoproterenol- (ISO-) induced myocardial infarction (MI) in Sprague-Dawley (SD) rats. Rats treated with isoproterenol (85 mg/kg, s.c), administered. Twice at an interval of 24 h showed a significant ST-segment elevation in ECG, edema, and necrosis in histopathology and also in troponin I (cTnI), creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Pretreatment with F. indica (10, 30, and 100 mg/kg, p.o) for 21 days significantly reversed the effects of isoproterenol-induced ischemic changes in the ECG, levels of cTnI, CPK, LDH, and AST, and histopathological changes. In isolated rat atrial strips, F. indica induced negative chronotropic and inotropic effects which were not affected by pretreatment with atropine, excluding role of cardiac muscarinic receptors. Cumulative addition of the extract induced a vasorelaxant effect on phenylephrine-evoked contractions in isolated rat aortic rings, which remained unchanged when challenged with L-NAME, excluding role of endothelial NO. However, extract of F. indica concentration dependently reversed contractions evoked with high K+, indicating calcium entry blocking effect. In conclusion, the F. indica extract is a cardioprotective remedy that ameliorates the isoproterenol-induced cardiotoxic effects and reverses cardiac ischemia, and the calcium antagonistic effect might be of useful in the treatment of MI.


Assuntos
Fumaria , Infarto do Miocárdio , Animais , Cálcio , Cardiotônicos/farmacologia , Creatina Quinase , Isoproterenol/toxicidade , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
9.
Bioinformation ; 18(11): 1044-1049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37693079

RESUMO

SGLT2 inhibitors are a novel class of FDA approved anti-diabetes drugs. They act by blocking the SGLT2 protein, which prevents glucose reabsorption, leading in enhance glucose excretion and lower blood glucose levels. In diabetic patients, SGLT2 inhibitors have been linked to urinary tract infections (UTIs). Therefore, the development of novel SGLT2 inhibitors with no adverse effects is a need of time. With this purpose, in this study, 48164natural compounds from ZINC database were screened targeting both the SGLT2 and FimH protein using insilico approaches. FimH has been discovered as a promising target for preventing and treating UTIs. The hit compounds ZINC69481892, ZINC1612996, and ZINC4039265 exhibited strong binding with both SGLT2 and FimH with binding energies values of -9.88, -8.96, and -10.57 kcal/mol for SGLT2, and -7.86, -7.01, and -8.92 kcal/mol for FimH, which is higher than that of controls (-6.78 kcal/mol (Empaglifozolin for SGLT2) and -5.14 kcal/mol (Heptyl α-d-mannopyranoside for FimH)). Hits were found to bind with key residues of both SGLT2 and FimH protein. In addition, physiochemical properties showed that these compounds have good drug-likeness properties. Therefore, we anticipate that if these compounds are investigated further, might be potential SGLT2 inhibitors with less uropathogenic adverse effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...