Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654121

RESUMO

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Assuntos
Inativação Gênica , RNA Longo não Codificante , Inativação do Cromossomo X , Fator de Transcrição YY1 , Animais , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Inativação do Cromossomo X/genética , Células-Tronco Embrionárias Murinas/metabolismo , Feminino , Masculino , Ligação Proteica , Diferenciação Celular/genética , Cromatina/metabolismo , Cromatina/genética , Regiões Promotoras Genéticas , Linhagem Celular , Cromossomo X/genética , Cromossomo X/metabolismo , Alelos
2.
Front Genet ; 14: 1199357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415606

RESUMO

Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.

3.
J Clin Med ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202188

RESUMO

OBJECTIVES: To evaluate the use of Exome Sequencing (ES) for the detection of genome-wide Copy Number Variants (CNVs) and the frequency of SNVs-InDels in selected genes related to developmental disorders in a cohort of consecutive pregnancies undergoing invasive diagnostic procedures for minor or simple ultrasound findings with no indication of ES. METHODS: Women undergoing invasive diagnostic testing (chorionic villus sampling or amniocentesis) for QF-PCR and chromosomal microarray analysis (CMA) due to prenatal ultrasound findings without an indication for ES were selected over a five-month period (May-September 2021). ES was performed to compare the efficiency of genome-wide CNV detection against CMA analysis and to detect monogenic disorders. Virtual gene panels were selected to target genes related to ultrasound findings and bioinformatic analysis was performed, prioritizing variants based on the corresponding HPO terms. The broad Fetal Gene panel for developmental disorders developed by the PAGE group was also included in the analysis. RESULTS: A total of 59 out of 61 women consented to participate in this study. There were 36 isolated major fetal anomalies, 11 aneuploidy markers, 6 minor fetal anomalies, 4 multiple anomalies, and 2 other ultrasound signs. Following QF-PCR analysis, two uncultured samples were excluded from this study, and six (10%) common chromosome aneuploidies were detected. In the remaining 51 cases, no pathogenic CNVs were detected at CMA, nor were any pathogenic variants observed in gene panels only targeting the ultrasound indications. Two (3.9%) monogenic diseases, apparently unrelated to the fetal phenotype, were detected: blepharo-cheilo-odontic syndrome (spina bifida) and Duchenne muscular dystrophy (pyelocaliceal dilation). CONCLUSIONS: In our series of pregnancies with ultrasound findings, common aneuploidies were the only chromosomal abnormalities present, which were detected in 10% of cases. ES CNV analysis was concordant with CMA results in all cases. No additional findings were provided by only targeting selected genes based on ultrasound findings. Broadening the analysis to a larger number of genes involved in fetal developmental disorders revealed monogenic diseases in 3.9% of cases, which, although apparently not directly related to the indications, were clinically relevant.

4.
Bioprocess Biosyst Eng ; 45(10): 1635-1644, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35974197

RESUMO

L-Asparaginase (L-ASNase) is an enzyme applied in the treatment of lymphoid malignancies. However, an innovative L-ASNase with high yield and lower side effects than the commercially available preparations are still a market requirement. Here, a new-engineered Bacillus subtilis strain was evaluated for Aliivibrio fischeri L-ASNase II production, being the bioprocess development and the enzyme characterization studied. The pBS0E plasmid replicative in Bacillus sp and containing PxylA promoter inducible by xylose and its repressive molecule sequence (XylR) was used for the genetic modification. Initially, cultivations were carried out in orbital shaker, and then the process was scaled up to stirred tank bioreactor (STB). After the bioprocess, the cells were recovered and submitted to ultrasound sonication for cells disruption and intracellular enzyme recovery. The enzymatic extract was characterized to assess its biochemical, kinetic and thermal properties using L-Asparagine and L-Glutamine as substrates. The results indicated the potential enzyme production in STB achieving L-ASNase activity up to 1.539 U mL-1. The enzymatic extract showed an optimum pH of 7.5, high L-Asparagine affinity (Km = 1.2275 mmol L-1) and low L-Glutaminase activity (0.568-0.738 U mL-1). In addition, thermal inactivation was analyzed by two different Kinect models to elucidate inactivation mechanisms, low kinetic thermal inactivation constants for 25 ºC and 37 ºC (0.128 and 0.148 h-1, respectively) indicate an elevated stability. The findings herein show that the produced recombinant L-ASNase has potential to be applied for pharmaceutical purposes.


Assuntos
Antineoplásicos , Produtos Biológicos , Aliivibrio fischeri , Antineoplásicos/química , Asparaginase/química , Asparaginase/genética , Asparaginase/uso terapêutico , Asparagina , Bacillus subtilis/genética , Glutaminase , Glutamina , Preparações Farmacêuticas , Xilose
5.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012483

RESUMO

Despite the importance of ancient DNA for understanding human prehistoric dispersals, poor survival means that data remain sparse for many areas in the tropics, including in Africa. In such instances, analysis of contemporary genomes remains invaluable. One promising approach is founder analysis, which identifies and dates migration events in non-recombining systems. However, it has yet to be fully exploited as its application remains controversial. Here, we test the approach by evaluating the age of sub-Saharan mitogenome lineages sampled outside Africa. The analysis confirms that such lineages in the Americas date to recent centuries-the time of the Atlantic slave trade-thereby validating the approach. By contrast, in North Africa, Southwestern Asia and Europe, roughly half of the dispersal signal dates to the early Holocene, during the "greening" of the Sahara. We elaborate these results by showing that the main source regions for the two main dispersal episodes are distinct. For the recent dispersal, the major source was West Africa, but with two exceptions: South America, where the fraction from Southern Africa was greater, and Southwest Asia, where Eastern Africa was the primary source. These observations show the potential of founder analysis as both a supplement and complement to ancient DNA studies.


Assuntos
DNA Mitocondrial , Pessoas Escravizadas , África Subsaariana , Mudança Climática , DNA Antigo , DNA Mitocondrial/genética , Humanos , Filogenia , Filogeografia
6.
Cell Rep ; 39(7): 110830, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584662

RESUMO

X chromosome inactivation (XCI) is mediated by the non-coding RNA Xist, which directs chromatin modification and gene silencing in cis. The RNA binding protein SPEN and associated corepressors have a central role in Xist-mediated gene silencing. Other silencing factors, notably the Polycomb system, have been reported to function downstream of SPEN. In recent work, we found that SPEN has an additional role in correct localization of Xist RNA in cis, indicating that its contribution to chromatin-mediated gene silencing needs to be reappraised. Making use of a SPEN separation-of-function mutation, we show that SPEN and Polycomb pathways, in fact, function in parallel to establish gene silencing. We also find that differentiation-dependent recruitment of the chromosomal protein SmcHD1 is required for silencing many X-linked genes. Our results provide important insights into the mechanism of X inactivation and the coordination of chromatin-based gene regulation with cellular differentiation and development.


Assuntos
Proteínas de Drosophila , RNA Longo não Codificante , Cromatina , Proteínas de Drosophila/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X , Inativação do Cromossomo X/genética
7.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164193

RESUMO

L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.


Assuntos
Asparaginase/química , Líquidos Iônicos/química , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Rep ; 11(1): 21529, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728685

RESUMO

L-asparaginase (ASNase, EC 3.5.1.1) is an enzyme that catalyzes the L-asparagine hydrolysis into L-aspartic acid and ammonia, being mainly applied in pharmaceutical and food industries. However, some disadvantages are associated with its free form, such as the ASNase short half-life, which may be overcome by enzyme immobilization. In this work, the immobilization of ASNase by adsorption over pristine and modified multi-walled carbon nanotubes (MWCNTs) was investigated, the latter corresponding to functionalized MWCNTs through a hydrothermal oxidation treatment. Different operating conditions, including pH, contact time and ASNase/MWCNT mass ratio, as well as the operational stability of the immobilized ASNase, were evaluated. For comparison purposes, data regarding the ASNase immobilization with pristine MWCNT was detailed. The characterization of the ASNase-MWCNT bioconjugate was addressed using different techniques, namely Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA) and Raman spectroscopy. Functionalized MWCNTs showed promising results, with an immobilization yield and a relative recovered activity of commercial ASNase above 95% under the optimized adsorption conditions (pH 8, 60 min of contact and 1.5 × 10-3 g mL-1 of ASNase). The ASNase-MWCNT bioconjugate also showed improved enzyme operational stability (6 consecutive reaction cycles without activity loss), paving the way for its use in industrial processes.


Assuntos
Asparaginase/metabolismo , Asparagina/metabolismo , Enzimas Imobilizadas/metabolismo , Nanotubos de Carbono/química , Asparaginase/química , Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Temperatura
9.
Appl Microbiol Biotechnol ; 105(11): 4515-4534, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34059941

RESUMO

In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.


Assuntos
Antineoplásicos/metabolismo , Asparaginase/biossíntese , Asparagina , Biotecnologia , Dickeya chrysanthemi , Escherichia coli , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Recombinantes/biossíntese
10.
Genome Res ; 31(8): 1395-1408, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131006

RESUMO

RNA N 6-methyladenosine (m6A) modification plays important roles in multiple aspects of RNA regulation. m6A is installed cotranscriptionally by the METTL3/14 complex, but its direct roles in RNA processing remain unclear. Here, we investigate the presence of m6A in nascent RNA of mouse embryonic stem cells. We find that around 10% of m6A peaks are located in alternative introns/exons, often close to 5' splice sites. m6A peaks significantly overlap with RBM15 RNA binding sites and the histone modification H3K36me3. Acute depletion of METTL3 disrupts inclusion of alternative introns/exons in the nascent transcriptome, particularly at 5' splice sites that are proximal to m6A peaks. For terminal or variable-length exons, m6A peaks are generally located on or immediately downstream from a 5' splice site that is suppressed in the presence of m6A and upstream of a 5' splice site that is promoted in the presence of m6A. Genes with the most immediate effects on splicing include several components of the m6A pathway, suggesting an autoregulatory function. Collectively, our findings demonstrate crosstalk between the m6A machinery and the regulation of RNA splicing.


Assuntos
Éxons , Íntrons , Splicing de RNA , Transcriptoma , Processamento Alternativo , Animais , Éxons/genética , Íntrons/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Sítios de Splice de RNA
12.
Phys Chem Chem Phys ; 23(7): 4133-4140, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595039

RESUMO

Although aqueous biphasic systems have been largely investigated in the separation and/or purification of biocompounds, their potential as reaction media to design integrated reaction-separation processes has been less explored. In this work aqueous biphasic systems (ABSs) composed of polypropylene glycol of molecular weight 400 g mol-1 (PPG 400) and different polyethylene glycols (PEGs) were characterized, and investigated for integrated reaction-separation processes, i.e. in the nucleophilic degradation of diazinon and further separation of reaction products by taking advantage of the lower-critical solution temperature (LCST) behaviour of these ABSs. The nucleophilic degradation of diazinon was carried out in the monophasic regime at 298 K, after which an increase in temperature (up to 313 K) allowed the product separation by two-phase formation (thermoreversible systems). The reaction kinetics and reaction pathways have been determined. The reaction kinetic increases as the PEG molecular weight decreases, with the half-life values obtained being competitive to those previously reported using volatile organic solvents as solvent media and significantly higher than under alkaline hydrolysis. One reaction pathway occurs in ABSs comprising PEGs of higher molecular weights, whereas in the ABS composed of PEG 600 two reaction pathways have been identified, meaning that the reaction pathways can be tailored by changing the PEG nature. ABSs formed by PEGs of lower molecular weights were identified as the most promising option to separate the pesticide degradation products by simply applying changes in temperature.

13.
Curr Opin Genet Dev ; 61: 53-61, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32403014

RESUMO

Many intricate pathways contribute to the timely control of gene expression during development. Polycomb repressive complexes (PRC1 and PRC2) and long non-coding RNAs (lncRNAs) are players associated with gene repression in various developmental processes such as X chromosome inactivation (XCI) and genomic imprinting. Historically, lncRNAs were proposed to directly recruit PRC2. However, recent evidence suggests that promiscuous interactions between PRC2 and RNA fine-tune the function of the complex through a multiplicity of mechanisms. A PRC2-recruitment model was definitively overturned in the paradigm of XCI by Xist RNA, being replaced by a novel mechanism which puts PRC1 in the spotlight. This review focuses on these recent advances in understanding the interplay between RNA and Polycomb complexes for gene expression control.


Assuntos
Impressão Genômica/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Proteínas do Grupo Polycomb/genética , Cromossomo X/genética , Inativação do Cromossomo X/genética
14.
J Vestib Res ; 30(2): 109-120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32310201

RESUMO

BACKGROUND: Although there are articles and studies that associate postural changes with changes in vocal quality, to the best of our knowledge, this was the first study investigating the association between balance disorders and voice. OBJECTIVE: This study aimed to determine whether patients with balance disorders present any clinical, acoustic, or endoscopic vocal changes, and if the correction of balance impairments, such as through vestibular rehabilitation, lead to improvement in vocal quality. METHODS: This was a prospective cohort study that analyzed vocal differences (clinical, videoendostroboscopic, audio-perceptual, and acoustic vocal parameters) in a sample of 43 patients with vestibular dysfunction at three different time points (pre-treatment, post-treatment, and 3 months' post-treatment) diagnosed by videonystagmography with changes in computerized dynamic posturography who were treated with vestibular rehabilitation. RESULTS: In pre-treatment, all of the patients presented supraglottic hyperfunction during videoendoscopic examination and abnormal values in the audio-perceptual scale. After treatment for balance disorders, there was a statistically significant improvement in some parameters of the videoendoscopic and audio-perceptual measures. These improvements were detected immediately after treatment and remained present until at least three months after treatment. CONCLUSIONS: The results suggested that the treatment for balance disorders results in changes in posture and consequently in voice quality.


Assuntos
Equilíbrio Postural/fisiologia , Doenças Vestibulares/reabilitação , Testes de Função Vestibular/métodos , Gravação em Vídeo/métodos , Distúrbios da Voz/reabilitação , Voz/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/fisiopatologia , Distúrbios da Voz/diagnóstico , Distúrbios da Voz/fisiopatologia , Qualidade da Voz/fisiologia
15.
Int J Biol Macromol ; 150: 914-921, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068054

RESUMO

Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune diseases and neurological disorders, however, the current technologies to purify and recover IgG from biological media are of high-cost and time-consuming, resulting in high-cost products. In this sense, the search for cost-effective technologies to obtain highly pure and active IgG is highly required. The present work proposes a simple and efficient method for the purification and recovery of IgG from rabbit serum using magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a siliceous material modified with the anionic polysaccharide κ-carrageenan. Experimental parameters such as pH, contact time between the hybrid magnetic nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact time of 60 min and using a rabbit serum with a total protein concentration of 4.8 mg·mL-1. Under these conditions, it was obtained an IgG purification factor and adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG from the HMNPs was evaluated using two strategies: a KCl aqueous solution and buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins was evaluated by circular dichroism and no changes in the secondary structure were observed, meaning that the IgG integrity is kept after the adsorption and desorption steps. In summary, the application of HMNPs in the purification of IgG from serum samples has a high potential as a new downstream platform.


Assuntos
Carragenina/química , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Nanopartículas de Magnetita/química , Adsorção , Animais , Anticorpos Monoclonais/isolamento & purificação , Concentração de Íons de Hidrogênio , Imunoglobulina G/sangue , Tamanho da Partícula , Coelhos , Água , Difração de Raios X
16.
RSC Adv ; 10(52): 31205-31213, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520670

RESUMO

The enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading. Accordingly, in this study, multi-walled carbon nanotubes (MWCNTs) were explored as novel supports for ASNase immobilization by a simple adsorption method. The effect of pH and contact time of immobilization, as well as the ASNase to nanoparticles mass ratio, were optimized according to the enzyme immobilization yield and relative recovered activity. The enzyme-MWCNTs bioconjugation was confirmed by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman and transmission electron microscopy (TEM) studies. MWCNTs have a high ASNase loading capacity, with a maximum immobilization yield of 90%. The adsorbed ASNase retains 90% of the initial enzyme activity at the optimized conditions (pH 8.0, 60 min, and 1.5 × 10-3 g mL-1 of ASNase). According to these results, ASNase immobilized onto MWCNTs can find improved applications in several areas, namely biosensors, medicine and food industry.

17.
Folia Phoniatr Logop ; 72(4): 282-289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31266034

RESUMO

BACKGROUND: The association between voice and body posture is consensual across the scientific literature and seems to be established both ways. Any changes in normal posture can influence the mechanisms of vocal production; on the other hand, vocal rehabilitation can influence posture. OBJECTIVES: This study aimed to evaluate the postural pattern in subjects with organic voice disorders before and after speech rehabilitation, using computerised dynamic posturography (CDP). METHODS: In this prospective cohort study, 21 patients affected by dysphonia caused by benign vocal fold lesions, never treated with speech therapy/vocal training, were submitted to a posturographic analysis using CDP before and after vocal rehabilitation/therapy. Each patient underwent an accurate voice and ear, nose, and throat (ENT) anamnesis, a general ENT examination, a rigid and flexible laryngoscopy, a videolaryngostroboscopy, an acoustic voice analysis including aerodynamic evaluation, and a perceptual evaluation of voice using the Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scale and the Voice Handicap Index (VHI) questionnaire, before and after vocal therapy. Fifteen healthy age- and sex-matched volunteers were also submitted to a posturographic analysis on the day of recruitment and 4 weeks later. RESULTS: All patients showed an improvement in voice quality after vocal training. The VHI decreased in all subjects, and the GRBAS scale showed a decrease in all parameters in each vowel (/a/, /i/, /e/) and in spontaneous speech (p < 0.001 for all). Posturographic results showed an improvement in equilibrium score, in conditions 2-6 and composite score. Strategic analysis results showed an improvement in conditions 1-6. CONCLUSIONS: The posturographic analysis showed a significant difference in the visual, vestibular, and proprioceptive component of posture after voice therapy. These results showed that dysphonic patients changed their postural patterns after an effective voice treatment, with an improvement in postural performance. It seems like modifications of breathing pattern and voice production techniques led to objective and measurable postural changes.


Assuntos
Disfonia , Postura , Fonoterapia , Treinamento da Voz , Disfonia/terapia , Humanos , Laringoscopia , Estudos Prospectivos , Prega Vocal , Qualidade da Voz
18.
Nat Commun ; 10(1): 3129, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311937

RESUMO

Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA , Técnicas de Inativação de Genes , Inativação Gênica , Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a RNA/genética
19.
Green Chem ; 20(8): 1906-1916, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30271275

RESUMO

Phenolic acids are ubiquitous biomolecules exhibiting a wide range of physiological properties, with application in the pharmaceutical and nutraceutical fields. In this work, aqueous biphasic systems (ABS) formed by polyethylene glycol and sodium polyacrylate, and inorganic salts or ionic liquids as electrolytes, were applied to the purification of caffeic, ferulic and protocatechuic acids, followed by the use of centrifugal partition chromatography (CPC) to reinforce the fractionation process scale-up. In single-step experiments in ABS, high selectivities (SFA/CA = 12.09; SCA/PA = 6.32; SFA/PA = 1.91) and adequate partition coefficients (KCA = 2.78 ± 0.20; KPA = 0.44 ± 0.04; KFA = 0.23 ± 0.01) were achieved using ABS formed by sodium chloride as electrolyte. This system was further applied in CPC, allowing an efficient separation of the three phenolic acids after the optimization of the equipment operational conditions, while demonstrating the potential of polymer-based ABS to be used in liquid-liquid chromatography. Finally, the recovery of the phenolic acids (≥ 65%) with high purity from the ABS phases was demonstrated, followed by the reuse of the phase-forming components.

20.
Biotechnol Prog ; 34(5): 1205-1212, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006961

RESUMO

Given the biotechnology advances observed in recent years in terms of upstream, the development of effective downstream processes becomes mandatory to decrease the associated costs of biotechnological-based products. Although a large interest has been devoted to ionic-liquid-based aqueous biphasic systems (IL-based ABS) as tailored separation platforms, imidazolium-based ILs have been the preferred choice as phase-forming agents. To overcome some toxicity and biodegradability issues associated to imidazolium-based ILs, novel ABS composed of ILs analogues of glycine-betaine (AGB-ILs) are here proposed and investigated. Five AGB-ILs were synthesized, characterized in terms of ecotoxicity, and applied toward the development of novel ABS formed with Na2 SO4 . Three commercial ILs were also investigated for comparison purposes. The respective ABS ternary phase diagrams, as well as the tie-lines and tie-line lengths, were determined at 25°C. Finally, their performance as extraction strategies was evaluated with five amino acids (L-tryptophan, L-phenylalanine, D-phenylalanine, L-tyrosine and L-3,4-dihydroxyphenylalanine/L-dopa). In all studied systems amino acids preferentially migrate to the IL-rich phase, and with AGB-ILs, the amino acid extraction efficiencies to the IL-rich phase range between 65% and 100%, obtained in a single-step. Furthermore, the studied AGB-ILs display a higher ability to form ABS and to extract amino acids than ABS composed of more traditional and commercial ILs. In summary, novel ABS composed of AGB-ILs can be formed and used as separation routes of value-added compounds of biotechnological interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1205-1212, 2018.


Assuntos
Betaína/química , Líquidos Iônicos/química , Água/química , Aminoácidos/química , Biotecnologia , Fracionamento Químico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...