Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbes ; 5: xtae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606354

RESUMO

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

3.
Microbiol Spectr ; 10(6): e0326822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453910

RESUMO

It was recently proposed that Enterococcus faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis. Our goals were to develop a PCR assay to rapidly differentiate these species and to discuss the main phenotypic and genotypic differences from a clinical perspective. The pan-genome of 512 genomes of E. faecium and E. lactis strains was analyzed to assess diversity in genes between the two species. Sequences were aligned to find the best candidate gene for designing species-specific primers, and their accuracy was tested with a collection of 382 enterococci. E. lactis isolates from clinical origins were further characterized by whole-genome sequencing (Illumina). Pan-genome analysis resulted in 12 gene variants, with gene gluP (rhomboid protease) being selected as the candidate for species differentiation. The nucleotide sequence of gluP diverged by 90 to 92% between sets, which allowed species identification through PCR with 100% specificity and no cross-reactivity. E. lactis strains were greatly pan-susceptible and not host specific. Hospital E. lactis isolates were susceptible to clinically relevant antibiotics, lacked infection-associated virulence markers, and were associated with patients presenting risk factors for enhanced bacterial translocation. Here, we propose a PCR-based assay using gluP for easy routine differentiation between E. faecium and E. lactis that could be implemented in different public health contexts. We further suggest that E. lactis, a dominant human gut species, can cross the gut barrier in severely ill, immunodeficient, and surgical patients. Knowing that bacterial translocation may be a sepsis promoter, the relevance of infections caused by E. lactis strains, even if they are pan-susceptible, should be explored. IMPORTANCE Enterococcus faecium is a WHO priority pathogen that causes severe and hard-to-treat human infections. It was recently proposed that E. faecium colonizing the human gut (previous clade B) actually corresponds to Enterococcus lactis; therefore, some of the human infections occurring globally are being misidentified. In this work, we developed a PCR-based rapid identification method for the differentiation of E. faecium and E. lactis and discussed the main phenotypic and genotypic differences of these species from a clinical perspective. We identified the gluP gene as the best candidate, based on the phylogenomic analysis of 512 published pan-genomes, and validated the PCR assay with a comprehensive collection of 382 enterococci obtained from different sources. Further detailed analysis of clinical E. lactis strains showed that they are highly susceptible to antibiotics and lack the typical virulence markers of E. faecium but are able to cause severe human infections in immunosuppressed patients, possibly in part due to gut barrier translocation.


Assuntos
Enterococcus faecium , Enterococcus , Infecções por Bactérias Gram-Positivas , Reação em Cadeia da Polimerase , Humanos , Antibacterianos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococcus/genética , Enterococcus/isolamento & purificação
4.
Microorganisms ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336207

RESUMO

Multidrug-resistant (MDR) Enterococcus faecium (Efm) infections continue to increase worldwide, although epidemiological studies remain scarce in lower middle-income countries. We aimed to explore which strains circulate in E. faecium causing human infections in Tunisian healthcare institutions in order to compare them with strains from non-human sources of the same country and finally to position them within the global E. faecium epidemiology by genomic analysis. Antibiotic susceptibility testing was performed and transfer of vancomycin-vanA and ampicillin-pbp5 resistance was performed by conjugation. WGS-Illumina was performed on Tunisian strains, and these genomes were compared with Efm genomes from other regions present in the GenBank/NCBI database (n = 10,701 Efm genomes available May 2021). A comparison of phenotypes with those predicted by the recent ResFinder 4.1-CGE webtool unveiled a concordance of 88%, with discordant cases being discussed. cgMLST revealed three clusters [ST18/CT222 (n = 13), ST17/CT948 strains (n = 6), and ST203/CT184 (n = 3)], including isolates from clinical, healthy-human, retail meat, and/or environmental sources in different countries over large time spans (10-12 years). Isolates within each cluster showed similar antibiotic resistance, bacteriocin, and virulence genetic patterns. pbp5-AmpR was transferred by VanA-AmpR-ST80 (clinical) and AmpR-ST17-Efm (bovine meat). Identical chromosomal pbp5-platforms carrying metabolic/virulence genes were identified between ST17/ST18 strains of clinical, farm animal, and retail meat sources. The overall results emphasize the role of high-resolution genotyping as provided by WGS in depicting the dispersal of MDR-Efm strains carrying relevant adaptive traits across different hosts/regions and the need of a One Health task force to curtail their spread.

5.
Antibiotics (Basel) ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680796

RESUMO

Enterococcus spp. are one of the most frequent producers of bacteriocins (enterocins), which provides them with an advantage to compete in their natural environment, which is the gut of humans and many animals. The enterocins' activity against microorganisms from different phylogenetic groups has raised interest in Enterococcus spp. in different contexts throughout the last decades, especially in the food industry. Nevertheless, some species can also cause opportunistic life-threatening infections and are frequently multidrug-resistant (MDR). Vancomycin-resistant Enterococcus (VRE), in particular, are an ongoing global challenge given the lack of therapeutic options. In this scenario, bacteriocins can offer a potential solution to this persistent threat, either alone or in combination with other antimicrobials. There are a handful of studies that demonstrate the advantages and applications of bacteriocins, especially against VRE. The purpose of this review is to present a current standpoint about the dual role of Enterococcus spp., from important producers to targets needed to be controlled, and the crucial role that enterocins may have in the expansion of enterococcal populations. Classification and distribution of enterocins, the current knowledge about the bacteriocinome of clinical enterococci, and the challenges of bacteriocin use in the fight against VRE infections are particularly detailed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA