Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
BMC Res Notes ; 17(1): 86, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509599

RESUMO

OBJECTIVES: We aimed to analyze the risk factors for management failure of BC after pediatric liver transplantation (pLT) by retrospectively analyzing primary pLT performed between 1997 and 2018 (n = 620 patients). RESULTS: In all, 117/620 patients (19%) developed BC. The median (range) follow-up was 9 (1.4-21) years. Patient survival at 1, 5 and 10 years was 88.9%, 85.7%, 84.4% and liver graft survival was 82.4%, 77.4%, and 74.3% respectively. Graft not patient survival was impaired by BC (p = 0.01). Multivariate analysis identified the number of dilatation courses > 2 (p = 0.008), prolonged cold ischemia time (p = 0.004), anastomosed multiple biliary ducts (p = 0.019) and hepatic artery thrombosis (p = 0.01) as factors associated with impaired graft survival. The number of dilatation courses > 2 (p < 0.001) and intrahepatic vs anastomotic stricture (p = 0.014) were associated with management failure. Thus, repeated (> 2) radiologic dilatation courses are associated with impaired graft survival and management failure. Overall, graft but not patient survival was impaired by BC.


Assuntos
Hepatopatias , Transplante de Fígado , Criança , Humanos , Transplante de Fígado/efeitos adversos , Estudos Retrospectivos , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Hepatopatias/etiologia , Fatores de Risco
3.
Orphanet J Rare Dis ; 18(1): 383, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062451

RESUMO

BACKGROUND: Oral cholic acid therapy is an effective therapy in children with primary bile acid synthesis deficiencies. Most reported patients with this treatment have 3ß-hydroxy-Δ5-C27-steroid oxidoreductase deficiency. The aim of the study was the evaluation of cholic acid therapy in a cohort of patients with the rarer Δ4-3-oxosteroid 5ß-reductase (Δ4-3-oxo-R) deficiency. METHODS: Sixteen patients with Δ4-3-oxo-R deficiency confirmed by AKR1D1 gene sequencing who received oral cholic acid were retrospectively analyzed. RESULTS: First symptoms were reported early in life (median 2 months of age), with 14 and 3 patients having cholestatic jaundice and severe bleeding respectively. Fifteen patients received ursodeoxycholic acid before diagnosis, with partial improvement in 8 patients. Four patients had liver failure at the time of cholic acid initiation. All 16 patients received cholic acid from a median age of 8.1 months (range 3.1-159) and serum liver tests normalized in all within 6-12 months of treatment. After a median cholic acid therapy of 4.5 years (range 1.1-24), all patients were alive with their native liver. Median daily cholic acid dose at last follow-up was 8.3 mg/kg of body weight. All patients, but one, had normal physical examination and all had normal serum liver tests. Fibrosis, evaluated using liver biopsy (n = 4) or liver elastography (n = 9), had stabilized or improved. Cholic acid therapy enabled a 12-fold decrease of 3-oxo-∆4 derivatives in urine. Patients had normal growth and quality of life. The treatment was well tolerated without serious adverse events and signs of hepatotoxicity. CONCLUSIONS: Oral cholic acid therapy is a safe and effective treatment for patients with Δ4-3-oxo-R deficiency.


Assuntos
Ácidos e Sais Biliares , Doenças Metabólicas , Criança , Humanos , Ácido Cólico/uso terapêutico , Estudos Retrospectivos , Qualidade de Vida , Doenças Metabólicas/tratamento farmacológico , Oxirredutases/genética
4.
JHEP Rep ; 5(10): 100844, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37701337

RESUMO

Background & Aims: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods: We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results: Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions: Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications: In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.

6.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142670

RESUMO

ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin-Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminofenóis , Animais , Colestase Intra-Hepática , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Proteínas de Fluorescência Verde/metabolismo , Quinolonas , Ácido Taurocólico/farmacologia
7.
Diagnostics (Basel) ; 12(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35626323

RESUMO

BACKGROUND: Cholestasis is a frequent and severe condition during childhood. Genetic cholestatic diseases represent up to 25% of pediatric cholestasis. Molecular analysis by targeted-capture next generation sequencing (NGS) has recently emerged as an efficient diagnostic tool. The objective of this study is to evaluate the use of NGS in children with cholestasis. METHODS: Children presenting cholestasis were included between 2015 and 2020. Molecular sequencing was performed by targeted capture of a panel of 34 genes involved in cholestasis and jaundice. Patients were classified into three categories: certain diagnosis; suggested diagnosis (when genotype was consistent with phenotype for conditions without any available OMIM or ORPHANET-number); uncertain diagnosis (when clinical and para-clinical findings were not consistent enough with molecular findings). RESULTS: A certain diagnosis was established in 169 patients among the 602 included (28.1%). Molecular studies led to a suggested diagnosis in 40 patients (6.6%) and to an uncertain diagnosis in 21 patients (3.5%). In 372 children (61.7%), no molecular defect was identified. CONCLUSIONS: NGS is a useful diagnostic tool in pediatric cholestasis, providing a certain diagnosis in 28.1% of the patients included in this study. In the remaining patients, especially those with variants of uncertain significance, the imputability of the variants requires further investigations.

8.
Hepatology ; 73(4): 1449-1463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32702170

RESUMO

BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.Y354X, p.R415X, p.R470X, p.R1057X, p.R1090X, and p.E1302X) identified in patients with PFIC2. APPROACH AND RESULTS: The ability of G418, gentamicin, and PTC124 to induce readthrough was studied using a dual gene reporter system in NIH3T3 cells. The ability of gentamicin to induce readthrough and to lead to the expression of a full-length protein was studied in human embryonic kidney 293 (HEK293), HepG2, and Can 10 cells using immunodetection assays. The function of the gentamicin-induced full-length protein was studied by measuring the [3 H]-taurocholate transcellular transport in stable Madin-Darby canine kidney clones co-expressing Na+-taurocholate co-transporting polypeptide (Ntcp). Combinations of gentamicin and chaperone drugs (ursodeoxycholic acid, 4-phenylbutyrate [4-PB]) were investigated. In NIH3T3, aminoglycosides significantly increased the readthrough level of all mutations studied, while PTC124 only slightly increased the readthrough of p.E1302X. Gentamicin induced a readthrough of p.R415X, p.R470X, p.R1057X, and p.R1090X in HEK293 cells. The resulting full-length proteins localized within the cytoplasm, except for BsepR1090X , which was also detected at the plasma membrane of human embryonic kidney HEK293 and at the canalicular membrane of Can 10 and HepG2 cells. Additional treatment with 4-PB and ursodeoxycholic acid significantly increased the canalicular proportion of full-length BsepR1090X protein in Can 10 cells. In Madin-Darby canine kidney clones, gentamicin induced a 40% increase of the BsepR1090X [3 H]-taurocholate transport, which was further increased with additional 4-PB treatment. CONCLUSION: This study constitutes a proof of concept for readthrough therapy in selected patients with PFIC2 with nonsense mutations.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Códon sem Sentido/efeitos dos fármacos , Animais , Estudos de Coortes , Cães , Gentamicinas/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Oxidiazóis/farmacologia , Fenilbutiratos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ácido Ursodesoxicólico/farmacologia
9.
Liver Int ; 40(8): 1917-1925, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433800

RESUMO

BACKGROUND & AIM: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.


Assuntos
Colestase Intra-Hepática , Quinolonas , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Aminofenóis , Animais , Ácidos e Sais Biliares , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Cães , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...