Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Egypt Heart J ; 76(1): 43, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568384

RESUMO

BACKGROUND: Pediatric cardiomyopathies (CMP) can be familial or idiopathic with increasing detection of genetic mutations. The study is a retrospective single-center review of cardiomyopathy patients from January 2011 to May 2020. Results of the genetic study, as well as the outcome, were reported. Patients were divided according to the type of CMP, age of presentation, and EF at presentation. Univariate and multivariate analysis and ROC and survival curves were done. RESULTS: We reported 229 patients under 14 years of age with a diagnosis of cardiomyopathy, most commonly DCM (160 patients (70%)) followed by HCM (26.2%). 52% presented at 6 months of age or less and 119 (52%) required ICU admission at presentation. The genetic and or metabolic disorder was confirmed in 21.4% of patients, most commonly VLCAD defect (16, 7%) and ELAC2 gene defect (10, 4.4%). During the disease course, 88 patients (38.4%) died (48 with DCM, 39 with HCM, and 1 with RCM). An EF of 20% or less at presentation and presentation at 6 months of age or less carries a risk for mortality in patients with DCM and HCM, respectively (RR 3.88 and 2.06 and OR of 11.09 and 4.35, respectively). Death was more common among HCM patients especially patients with positive genetic abnormality compared with patients with DCM. CONCLUSIONS: The mortality for CMP in children reaches up to 40%, (30% in DCM and 65% in HCM patients). Mortality was higher in those with HCM, DCM with EF of 20% or less, and HCM presented at 6 months of age or less. Whole-exome and/or whole-genome sequencing is advised for all patients of CMP and at-risk family members.

2.
Cureus ; 15(12): e50941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249165

RESUMO

BACKGROUND: Previously published studies suggest that genetic or environmental causes can be observed in 20-30% of congenital heart disease (CHD) patients, which include aneuploidy, single gene defects, pathological copy number variations, and de novo autosomal dominant and recessive inheritance. Moreover, the genetic background of childhood cardiomyopathies (CMs) has not been elucidated well. OBJECTIVE: The study highlights the value of genetic assessment in diagnosing and family counseling for CHD and pediatric CM patients referred to the genetic clinic in a pediatric cardiology department. METHODS: The study involved patients less than 18 years of age attending the cardiogenetic clinic in the pediatric cardiology department between December 2010 and February 2019. The following patient categories who had genetic evaluation were included: CHD in the presence of a syndromic phenotype, patients with CHD having extracardiac congenital anomalies or delayed development, hypertrophic and dilated CM patients, patients with dilated aortic root and ascending aorta, significant CHD in siblings or first-degree relatives, suspected channelopathies; and interrupted aortic arch abnormalities. RESULTS: A total of 285 patients were evaluated in the cardiogenetic clinic. The mean age was 20.2 months, with a range of 0-168. Females and males constituted 153 (53.7%) and 132 (46.3%), respectively. The most common cause of referral to the genetic clinic was the presence of CM (N=134 (46.3%)): hypertrophic CM in 24% and dilated CM in 20% of cases. Seventy-six patients (26.7%) had positive genetic results. The most common genetic abnormality was familial infantile hypertrophic CM-causing gene ELAC2 in 19 (23.5%) cases. CONCLUSION: It may be beneficial for any pediatric cardiology unit to provide an established genetic clinic. Using a genetic clinic will enhance understanding of CHD pathophysiology, family education, and genetic counseling. Agreement on a well-written protocol and the way forward to specify what congenital heart conditions require genetic investigation should be clarified.

3.
Cureus ; 15(12): e50899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249193

RESUMO

Even though cardiac computed tomography and magnetic resonance imaging are the gold standard for evaluating the aortic arch in the context of vascular rings in children, echocardiography is usually the first-line modality. The echocardiographic evaluation of the aortic arch in the context of vascular rings in children has received little attention. This article details the step-by-step echocardiographic assessment of the aortic arch in vascular ring patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA