Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0283308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676891

RESUMO

The Gull Alpha Power Lomax distribution is a new extension of the Lomax distribution that we developed in this paper (GAPL). The proposed distribution's appropriateness stems from its usefulness to model both monotonic and non-monotonic hazard rate functions, which are widely used in reliability engineering and survival analysis. In addition to their special cases, many statistical features were determined. The maximum likelihood method is used to estimate the model's unknown parameters. Furthermore, the proposed distribution's usefulness is demonstrated using two medical data sets dealing with COVID-19 patients' mortality rates, as well as extensive simulated data applied to assess the performance of the estimators of the proposed distribution.


Assuntos
COVID-19 , Charadriiformes , Humanos , Animais , Reprodutibilidade dos Testes , Simulação por Computador , Engenharia
2.
PLoS One ; 18(7): e0288635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463159

RESUMO

In probability theory and statistics, it is customary to employ unit distributions to explain practical variables having values between zero and one. This study suggests a brand-new distribution for modelling data on the unit interval called the unit-exponentiated Lomax (UEL) distribution. The statistical aspects of the UEL distribution are shown. The parameters corresponding to the proposed distribution are estimated using widely recognized estimation techniques, such as Bayesian, maximum product of spacing, and maximum likelihood. The effectiveness of the various estimators is assessed through a simulated scenario. Using mock jurors and food spending data sets, the UEL regression model is demonstrated as an alternative to unit-Weibull regression, beta regression, and the original linear regression models. Using Covid-19 data, the novel model outperforms certain other unit distributions according to different comparison criteria.


Assuntos
COVID-19 , Modelos Estatísticos , Humanos , Funções Verossimilhança , Teorema de Bayes , COVID-19/epidemiologia , Modelos Lineares
3.
Sci Rep ; 13(1): 12243, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507438

RESUMO

The paper presents a novel statistical approach for analyzing the daily coronavirus case and fatality statistics. The survival discretization method was used to generate a two-parameter discrete distribution. The resulting distribution is referred to as the "Discrete Marshall-Olkin Length Biased Exponential (DMOLBE) distribution". Because of the varied forms of its probability mass and failure rate functions, the DMOLBE distribution is adaptable. We calculated the mean and variance, skewness, kurtosis, dispersion index, hazard and survival functions, and second failure rate function for the suggested distribution. The DI index demonstrates that the proposed model can represent both over-dispersed and under-dispersed data sets. We estimated the parameters of the DMOLBE distribution. The behavior of ML estimates is checked via a comprehensive simulation study. The behavior of Bayesian estimates is checked by generating 10,000 iterations of Markov chain Monte Carlo techniques, plotting the trace, and checking the proposed distribution. From simulation studies, it was observed that the bias and mean square error decreased with an increase in sample size. To show the importance and flexibility of DMOLBE distribution using two data sets about deaths due to coronavirus in China and Pakistan are analyzed. The DMOLBE distribution provides a better fit than some important discrete models namely the discrete Burr-XII, discrete Bilal, discrete Burr-Hatke, discrete Rayleigh distribution, and Poisson distributions. We conclude that the new proposed distribution works well in analyzing these data sets. The data sets used in the paper was collected from 2020 year.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , Simulação por Computador , Probabilidade , Cadeias de Markov , Método de Monte Carlo
4.
PLoS One ; 18(4): e0283618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036849

RESUMO

This paper provides a novel model that is more relevant than the well-known conventional distributions, which stand for the two-parameter distribution of the lifetime modified Kies Topp-Leone (MKTL) model. Compared to the current distributions, the most recent one gives an unusually varied collection of probability functions. The density and hazard rate functions exhibit features, demonstrating that the model is flexible to several kinds of data. Multiple statistical characteristics have been obtained. To estimate the parameters of the MKTL model, we employed various estimation techniques, including maximum likelihood estimators (MLEs) and the Bayesian estimation approach. We compared the traditional reliability function model to the fuzzy reliability function model within the reliability analysis framework. A complete Monte Carlo simulation analysis is conducted to determine the precision of these estimators. The suggested model outperforms competing models in real-world applications and may be chosen as an enhanced model for building a statistical model for the COVID-19 data and other data sets with similar features.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , Simulação por Computador , Modelos Estatísticos , Funções Verossimilhança , Análise de Dados
5.
PLoS One ; 18(3): e0282581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888601

RESUMO

In this paper, a bivariate power Lomax distribution based on Farlie-Gumbel-Morgenstern (FGM) copulas and univariate power Lomax distribution is proposed, which is referred to as BFGMPLx. It is a significant lifetime distribution for modeling bivariate lifetime data. The statistical properties of the proposed distribution, such as conditional distributions, conditional expectations, marginal distributions, moment-generating functions, product moments, positive quadrant dependence property, and Pearson's correlation, have been studied. The reliability measures, such as the survival function, hazard rate function, mean residual life function, and vitality function, have also been discussed. The parameters of the model can be estimated through maximum likelihood and Bayesian estimation. Additionally, asymptotic confidence intervals and credible intervals of Bayesian's highest posterior density are computed for the parameter model. Monte Carlo simulation analysis is used to estimate both the maximum likelihood and Bayesian estimators.


Assuntos
Modelos Estatísticos , Teorema de Bayes , Reprodutibilidade dos Testes , Simulação por Computador , Método de Monte Carlo
6.
PLoS One ; 18(1): e0278659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595502

RESUMO

During the course of this research, we came up with a brand new distribution that is superior; we then presented and analysed the mathematical properties of this distribution; finally, we assessed its fuzzy reliability function. Because the novel distribution provides a number of advantages, like the reality that its cumulative distribution function and probability density function both have a closed form, it is very useful in a wide range of disciplines that are related to data science. One of these fields is machine learning, which is a sub field of data science. We used both traditional methods and Bayesian methodologies in order to generate a large number of different estimates. A test setup might have been carried out to assess the effectiveness of both the classical and the Bayesian estimators. At last, three different sets of Covid-19 death analysis were done so that the effectiveness of the new model could be demonstrated.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , COVID-19/epidemiologia , Funções Verossimilhança
7.
PLoS One ; 17(10): e0276181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36269740

RESUMO

Since the spread of COVID-19 pandemic in early 2020, modeling the related factors became mandatory, requiring new families of statistical distributions to be formulated. In the present paper we are interested in modeling the vaccination rate in some African countries. The recorded data in these countries show less vaccination rate, which will affect the spread of new active cases and will increase the mortality rate. A new extension of the inverted Nadarajah-Haghighi distribution is considered, which has four parameters and is obtained by combining the inverted Nadarajah-Haghighi distribution and the odd Lomax-G family. The proposed distribution is called the odd Lomax inverted Nadarajah-Haghighi (OLINH) distribution. This distribution owns many virtuous characteristics and attractive statistical properties, such as, the simple linear representation of density function, the flexibility of the hazard rate curve and the odd ratio of failure, in addition to other properties related to quantile, the rth-moment, moment generating function, Rényi entropy, and the function of ordered statistics. In this paper we address the problem of parameter estimation from frequentest and Bayesian approach, accordingly a comparison between the performance of the two estimation methods is implemented using simulation analysis and some numerical techniques. Finally different goodness of fit measures are used for modeling the COVID-19 vaccination rate, which proves the suitability of the OLINH distribution over other competitive distributions.


Assuntos
COVID-19 , Modelos Estatísticos , Humanos , Vacinas contra COVID-19 , Teorema de Bayes , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação
8.
Sankhya Ser A ; : 1-28, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36105539

RESUMO

The mathematical modeling of the coronavirus disease-19 (COVID-19) pandemic has been attempted by a large number of researchers from the very beginning of cases worldwide. The purpose of this research work is to find and classify the modelling of COVID-19 data by determining the optimal statistical modelling to evaluate the regular count of new COVID-19 fatalities, thus requiring discrete distributions. Some discrete models are checked and reviewed, such as Binomial, Poisson, Hypergeometric, discrete negative binomial, beta-binomial, Skellam, beta negative binomial, Burr, discrete Lindley, discrete alpha power inverse Lomax, discrete generalized exponential, discrete Marshall-Olkin Generalized exponential, discrete Gompertz-G-exponential, discrete Weibull, discrete inverse Weibull, exponentiated discrete Weibull, discrete Rayleigh, and new discrete Lindley. The probability mass function and the hazard rate function are addressed. Discrete models are discussed based on the maximum likelihood estimates for the parameters. A numerical analysis uses the regular count of new casualties in the countries of Angola,Ethiopia, French Guiana, El Salvador, Estonia, and Greece. The empirical findings are interpreted in-depth.

9.
Comput Math Methods Med ; 2022: 1444859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035288

RESUMO

In this work, we presented the type I half logistic Burr-Weibull distribution, which is a unique continuous distribution. It offers several superior benefits in fitting various sorts of data. Estimates of the model parameters based on classical and nonclassical approaches are offered. Also, the Bayesian estimates of the model parameters were examined. The Bayesian estimate method employs the Monte Carlo Markov chain approach for the posterior function since the posterior function came from an uncertain distribution. The use of Monte Carlo simulation is to assess the parameters. We established the superiority of the proposed distribution by utilising real COVID-19 data from varied countries such as Saudi Arabia and Italy to highlight the relevance and flexibility of the provided technique. We proved our superiority using both real data.


Assuntos
COVID-19 , Teorema de Bayes , Humanos , Cadeias de Markov , Método de Monte Carlo , Distribuições Estatísticas
10.
J Appl Stat ; 49(12): 2981-3001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035610

RESUMO

This paper deals with the statistical inference of the unknown parameters of three-parameter exponentiated power Lindley distribution under adaptive progressive type-II censored samples. The maximum likelihood estimator (MLE) cannot be expressed explicitly, hence approximate MLEs are conducted using the Newton-Raphson method. Bayesian estimation is studied and the Markov Chain Monte Carlo method is used for computing the Bayes estimation. For Bayesian estimation, we consider two loss functions, namely: squared error and linear exponential (LINEX) loss functions, furthermore, we perform asymptotic confidence intervals and the credible intervals for the unknown parameters. A comparison between Bayes estimation and the MLE is observed using simulation analysis and we perform an optimally criterion for some suggested censoring schemes by minimizing bias and mean square error for the point estimation of the parameters. Finally, a real data example is used for the illustration of the goodness of fit for this model.

11.
Comput Intell Neurosci ; 2022: 1154705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242174

RESUMO

A two-parameter continuous distribution, namely, power-modified Lindley (PML), is proposed. Various structural properties of the new distribution, including moments, moment-generating function, conditional moments, mean deviations, mean residual lifetime, and mean past lifetime, are provided. The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent. Maximum-likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Bayesian estimation methods of the parameters with independent gamma prior are discussed based on symmetric and asymmetric loss functions. We proposed using the MCMC technique with the Metropolis-Hastings algorithm to approximate the posteriors of the stress-strength parameters for Bayesian calculations. The confidence interval for likelihood and the Bayesian estimation method is obtained for the parameter of the model and stress-strength reliability. We prove empirically the importance and flexibility of the new distribution in modeling with real data applications.


Assuntos
Algoritmos , Teorema de Bayes , Funções Verossimilhança , Reprodutibilidade dos Testes , Distribuições Estatísticas
12.
Results Phys ; 32: 104987, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34900522

RESUMO

This research aims to model the COVID-19 in different countries, including Italy, Puerto Rico, and Singapore. Due to the great applicability of the discrete distributions in analyzing count data, we model a new novel discrete distribution by using the survival discretization method. Because of importance Marshall-Olkin family and the inverse Toppe-Leone distribution, both of them were used to introduce a new discrete distribution called Marshall-Olkin inverse Toppe-Leone distribution, this new distribution namely the new discrete distribution called discrete Marshall-Olkin Inverse Toppe-Leone (DMOITL). This new model possesses only two parameters, also many properties have been obtained such as reliability measures and moment functions. The classical method as likelihood method and Bayesian estimation methods are applied to estimate the unknown parameters of DMOITL distributions. The Monte-Carlo simulation procedure is carried out to compare the maximum likelihood and Bayesian estimation methods. The highest posterior density (HPD) confidence intervals are used to discuss credible confidence intervals of parameters of new discrete distribution for the results of the Markov Chain Monte Carlo technique (MCMC).

13.
Ann Data Sci ; 9(1): 121-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624798

RESUMO

This paper aims at defining an optimal statistical model for the COVID-19 distribution in the United Kingdom, and Canada. A combining the inverted Topp-Leone distribution and the odd Weibull family introduces a new lifetime distribution with a three-parameter to formulate the odd Weibull inverted Topp-Leone (OWITL) distribution. As a simple linear representation, hazard rate function, and moment function, this new distribution has several nice properties. To estimate the unknown parameters of OWITL distribution, maximum likelihood, least-square, weighted least-squares, maximum product spacing, Cramér-von Mises estimators, and Anderson-Darling estimation methods are used. To evaluate the use of estimation techniques, a numerical outcome of the Monte Carlo simulation is obtained.

14.
Entropy (Basel) ; 23(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34945968

RESUMO

The inverted Topp-Leone distribution is a new, appealing model for reliability analysis. In this paper, a new distribution, named new exponential inverted Topp-Leone (NEITL) is presented, which adds an extra shape parameter to the inverted Topp-Leone distribution. The graphical representations of its density, survival, and hazard rate functions are provided. The following properties are explored: quantile function, mixture representation, entropies, moments, and stress-strength reliability. We plotted the skewness and kurtosis measures of the proposed model based on the quantiles. Three different estimation procedures are suggested to estimate the distribution parameters, reliability, and hazard rate functions, along with their confidence intervals. Additionally, stress-strength reliability estimators for the NEITL model were obtained. To illustrate the findings of the paper, two real datasets on engineering and medical fields have been analyzed.

15.
Comput Intell Neurosci ; 2021: 5918511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630548

RESUMO

A new five-parameter transmuted generalization of the Lomax distribution (TGL) is introduced in this study which is more flexible than current distributions and has become the latest distribution theory trend. Transmuted generalization of Lomax distribution is the name given to the new model. This model includes some previously unknown distributions. The proposed distribution's structural features, closed forms for an rth moment and incomplete moments, quantile, and Rényi entropy, among other things, are deduced. Maximum likelihood estimate based on complete and Type-II censored data is used to derive the new distribution's parameter estimators. The percentile bootstrap and bootstrap-t confidence intervals for unknown parameters are introduced. Monte Carlo simulation research is discussed in order to estimate the characteristics of the proposed distribution using point and interval estimation. Other competitive models are compared to a novel TGL. The utility of the new model is demonstrated using two COVID-19 real-world data sets from France and the United Kingdom.


Assuntos
COVID-19 , Modelos Estatísticos , Humanos , Funções Verossimilhança , Método de Monte Carlo , SARS-CoV-2
16.
Comput Intell Neurosci ; 2021: 4227346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603431

RESUMO

For the first time and by using an entire sample, we discussed the estimation of the unknown parameters θ 1, θ 2, and ß and the system of stress-strength reliability R=P(Y < X) for exponentiated inverted Weibull (EIW) distributions with an equivalent scale parameter supported eight methods. We will use maximum likelihood method, maximum product of spacing estimation (MPSE), minimum spacing absolute-log distance estimation (MSALDE), least square estimation (LSE), weighted least square estimation (WLSE), method of Cramér-von Mises estimation (CME), and Anderson-Darling estimation (ADE) when X and Y are two independent a scaled exponentiated inverted Weibull (EIW) distribution. Percentile bootstrap and bias-corrected percentile bootstrap confidence intervals are introduced. To pick the better method of estimation, we used the Monte Carlo simulation study for comparing the efficiency of the various estimators suggested using mean square error and interval length criterion. From cases of samples, we discovered that the results of the maximum product of spacing method are more competitive than those of the other methods. A two real-life data sets are represented demonstrating how the applicability of the methodologies proposed in real phenomena.


Assuntos
Fibra de Carbono , Funções Verossimilhança , Método de Monte Carlo , Reprodutibilidade dos Testes , Distribuições Estatísticas
17.
Comput Intell Neurosci ; 2021: 2167670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497637

RESUMO

In reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new exponential-X (NEX) family of distributions is proposed to be a superior fitting model for some reliability models with nonmonotone hazard functions and beat the competitive distribution such as the exponential distribution and Frechet distribution with two and three parameters. So, we concentrated our effort to introduce a new novel model. Throughout this research, we have studied the properties of its statistical measures of the NEXF distribution. The process of parameter estimation has been studied under a complete sample and Type-I censoring scheme. The numerical simulation is detailed to asses the proposed techniques of estimation. Finally, a Type-I censoring real-life application on leukaemia patient's survival with a new treatment has been studied to illustrate the estimation methods, which are well fitted by the NEXF distribution among all its competitors. We used for the fitting test the novel modified Kolmogorov-Smirnov (KS) algorithm for fitting Type-I censored data.


Assuntos
Leucemia , Modelos Estatísticos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Distribuições Estatísticas
18.
Results Phys ; 23: 104012, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33728260

RESUMO

This paper aims to model the COVID-19 mortality rates in Italy, Mexico, and the Netherlands, by specifying an optimal statistical model to analyze the mortality rate of COVID-19. A new lifetime distribution with three-parameter is introduced by a combination of Rayleigh distribution and extended odd Weibull family to produce the extended odd Weibull Rayleigh (EOWR) distribution. This new distribution has many excellent properties as simple linear representation, hazard rate function, and moment generating function. Maximum likelihood, maximum product spacing and Bayesian estimation methods are applied to estimate the unknown parameters of EOWR distribution. MCMC method is used for the Bayesian estimation. A numerical result of the Monte Carlo simulation is obtained to assess the use of estimation methods. Also, data analysis for the real data of mortality rate is considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...