Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21537, 2024 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278949

RESUMO

Assisted living facilities cater to the demands of the elderly population, providing assistance and support with day-to-day activities. Fall detection is fundamental to ensuring their well-being and safety. Falls are frequent among older persons and might cause severe injuries and complications. Incorporating computer vision techniques into assisted living environments is revolutionary for these issues. By leveraging cameras and complicated approaches, a computer vision (CV) system can monitor residents' movements continuously and identify any potential fall events in real time. CV, driven by deep learning (DL) techniques, allows continuous surveillance of people through cameras, investigating complicated visual information to detect potential fall risks or any instances of falls quickly. This system can learn from many visual data by leveraging DL, improving its capability to identify falls while minimalizing false alarms precisely. Incorporating CV and DL enhances the efficiency and reliability of fall detection and allows proactive intervention, considerably decreasing response times in emergencies. This study introduces a new Deep Feature Fusion with Computer Vision for Fall Detection and Classification (DFFCV-FDC) technique. The primary purpose of the DFFCV-FDC approach is to employ the CV concept for detecting fall events. Accordingly, the DFFCV-FDC approach uses the Gaussian filtering (GF) approach for noise eradication. Besides, a deep feature fusion process comprising MobileNet, DenseNet, and ResNet models is involved. To improve the performance of the DFFCV-FDC technique, improved pelican optimization algorithm (IPOA) based hyperparameter selection is performed. Finally, the detection of falls is identified using the denoising autoencoder (DAE) model. The performance analysis of the DFFCV-FDC methodology was examined on the benchmark fall database. A widespread comparative study reported the supremacy of the DFFCV-FDC approach with existing techniques.


Assuntos
Acidentes por Quedas , Moradias Assistidas , Aprendizado Profundo , Humanos , Acidentes por Quedas/prevenção & controle , Idoso , Algoritmos
2.
Sci Rep ; 14(1): 18478, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122782

RESUMO

Inverse problems in biomedical image analysis represent a significant frontier in disease detection, leveraging computational methodologies and mathematical modelling to unravel complex data embedded within medical images. These problems include deducing the unknown properties of biological structures or tissues from the observed imaging data, presenting a unique challenge in decoding intricate biological phenomena. Regarding disease detection, this technique has played a critical role in optimizing diagnostic efficiency by extracting meaningful insights from different imaging modalities like molecular imaging, MRI, and CT scans. Inverse problems contribute to uncovering subtle abnormalities by employing iterative optimization techniques and sophisticated algorithms, enabling precise and early disease detection. Deep learning (DL) solutions have emerged as robust mechanisms for addressing inverse problems in biomedical image analysis, especially in disease recognition. Inverse problems involve reconstructing unknown structures or parameters from observed data, and the DL model excels in learning complex representations and mappings. This study develops a DL Solution for Inverse Problems in the Advanced Biomedical Image Analysis on Disease Detection (DLSIP-ABIADD) technique. The DLSIP-ABIADD technique exploits the DL approach to solve inverse problems and detect the presence of diseases on biomedical images. To solve the inverse problem, the DLSIP-ABIADD technique uses a direct mapping approach. Bilateral filtering (BF) is used for image preprocessing. Besides, the MobileNetv2 model derives feature vectors from the input images. Moreover, the Henry gas solubility optimization (HGSO) method is applied for optimal hyperparameter selection of the MobileNetv2 model. Furthermore, a bidirectional long short-term memory (BiLSTM) model is deployed to identify diseases in medical images. Extensive simulations have been involved to illustrate the better performance of the DLSIP-ABIADD technique. The experimentation outcomes stated that the DLSIP-ABIADD technique performs better than other models.


Assuntos
Algoritmos , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Assistida por Computador/métodos
3.
PeerJ Comput Sci ; 9: e1259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346697

RESUMO

In smart cities, the fast increase in automobiles has caused congestion, pollution, and disruptions in the transportation of commodities. Each year, there are more fatalities and cases of permanent impairment due to everyday road accidents. To control traffic congestion, provide secure data transmission also detecting accidents the IoT-based Traffic Management System is used. To identify, gather, and send data, autonomous cars, and intelligent gadgets are equipped with an IoT-based ITM system with a group of sensors. The transport system is being improved via machine learning. In this work, an Adaptive Traffic Management system (ATM) with an accident alert sound system (AALS) is used for managing traffic congestion and detecting the accident. For secure traffic data transmission Secure Early Traffic-Related EveNt Detection (SEE-TREND) is used. The design makes use of several scenarios to address every potential problem with the transportation system. The suggested ATM model continuously modifies the timing of traffic signals based on the volume of traffic and anticipated movements from neighboring junctions. By progressively allowing cars to pass green lights, it considerably reduces traveling time. It also relieves traffic congestion by creating a seamless transition. The results of the trial show that the suggested ATM system fared noticeably better than the traditional traffic-management method and will be a leader in transportation planning for smart-city-based transportation systems. The suggested ATM-ALTREND solution provides secure traffic data transmission that decreases traffic jams and vehicle wait times, lowers accident rates, and enhances the entire travel experience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA