Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626449

RESUMO

Alterations in renal perfusion play a major role in the pathogenesis of renal diseases. Renal contrast-enhanced ultrasound (CEUS) is increasingly applied to quantify renal cortical perfusion and to assess its change over time, but comprehensive assessment of the technique's repeatability is lacking. Ten adults attended two renal CEUS scans within 14 days. In each session, five destruction/reperfusion sequences were captured. One-phase association was performed to derive the following parameters: acoustic index (AI), mean transit time (mTT), perfusion index (PI), and wash-in rate (WiR). Intra-individual and inter-operator (image analysis) repeatability for the perfusion variables were assessed using intra-class correlation (ICC), with the agreement assessed using a Bland-Altman analysis. The 10 adults had a median (IQR) age of 39 years (30-46). Good intra-individual repeatability was found for mTT (ICC: 0.71) and PI (ICC: 0.65). Lower repeatability was found for AI (ICC: 0.50) and WiR (ICC: 0.56). The correlation between the two operators was excellent for all variables: the ICCs were 0.99 for PI, 0.98 for AI, 0.87 for mTT, and 0.83 for WiR. The Bland-Altman analysis showed that the mean biases (± SD) between the two operators were 0.03 ± 0.16 for mTT, 0.005 ± 0.09 for PI, 0.04 ± 0.19 for AI, and -0.02 ± 0.11 for WiR.

2.
Kidney Int Rep ; 5(3): 307-317, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154452

RESUMO

INTRODUCTION: The underlying mechanisms of skeletal muscle wasting in hemodialysis patients are complex. We performed a systematic review to summarize evidence on whether hemodialysis has acute effects on skeletal muscle perfusion, metabolism, and function. METHODS: The protocol was registered on PROSPERO (Registration number CRD42018103682). A systematic search was performed in MEDLINE, PubMed, Cochrane, Embase, Scopus, and Web of Science. Citation, reference list, and gray literature searches were also performed. Studies were selected in 2 stages: title and abstract review, then full-text review. RESULTS: A total of 65 full-text articles were reviewed, and 14 studies were eligible for inclusion. No studies were identified that assessed muscle perfusion during dialysis. Two studies used near-infrared spectroscopy to indirectly measure skeletal muscle oxygen consumption, which increased during dialysis in 1 study but only in patients with diabetes in the second. Metabolism was examined in 9 studies. A number of acute metabolic changes were reported (e.g., caspase-3 activity, polyubiquitin, and interleukin-6 protein increased in response to hemodialysis) as was a net negative protein balance over the dialysis session. Three studies examining muscle function did not produce consistent findings. CONCLUSION: Gaps remain in understanding the acute effects of hemodialysis on skeletal muscle, particularly for changes in perfusion and function, although there does appear to be an acute effect on muscle metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA