Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 30(6): 103681, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213694

RESUMO

The present study evaluated the impact of rac-GR24 on biomass and astaxanthin production under phenol stress coupled with biodiesel recovery from Haematococcus pluvialis. Phenol supplementation showed negative impact on growth, where the lowest biomass productivity of 0.027 g L-1 day-1 was recorded at 10 µM phenol, while 0.4 µM rac-GR24 supplementation showed the highest recorded biomass productivity of 0.063 g L-1 day-1. Coupling 0.4 µM rac-GR24 at different phenol concentrations confirmed the potential of rac-GR24 to mitigate the toxic effect of phenol by enhancing yield of PSII yield, RuBISCo activity, and antioxidant efficiency, which resulted in improved phenol phycoremediation efficiency. In addition, results suggested a synergistic action by rac-GR24 supplementation under phenol treatment where rac-GR24 enhanced lipid accumulation, while phenol enhanced astaxanthin production. Dual supplementation of rac-GR24 and phenol showed the highest recorded FAMEs content, which was 32.6% higher than the control, with improved biodiesel quality. The suggested approach could enhance the economic feasibility of triple-purpose application of microalgae in wastewater treatment, astaxanthin recovery, and biodiesel production.

2.
3 Biotech ; 12(9): 209, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935543

RESUMO

The present study aimed to evaluate the potential of aqueous phase after hydrothermal liquefaction of microalgae (Aq-P), enriched with seawater, as a growth medium coupled with crude bio-oil production by the halophyte Dunaliella salina. Results showed that Aq-P showed higher content of total organic carbon (TOC) and total nitrogen (10.24, and 5.11 g L-1, respectively), while seawater showed higher anions and cations content. At the 12th day of microalgae incubation, the Aq-P growth medium showed 15.9% higher dry weight than the control (f/2 medium), with enhanced lipid content by 21.2% over the control, and 5.7% significant reduction in carbohydrates. The bio-oil yields of microalgal biomass cultivated in f/2 and Aq-P were 28.74% and 29.54%, respectively. Using Aq-P enhanced the fatty acids/esters and hydrocarbons in the crude bio-oil by 12.6% and 1.7 times, respectively, comparing to f/2-derived bio-oil. However, nitrogen-containing compounds in the Aq-P-derived bio-oil reduced by 60.7% comparing to f/2 medium. Interestingly, diesel carbon-range represented the majority of the products in both f/2- and Aq-P-derived bio-oil (69.1% and 78.3%, respectively). The findings of the present study provide a new approach for development of sustainable microalgal cultivation system for crude bio-oil production through a closed-loop route using Aq-P and seawater.

3.
Saudi J Biol Sci ; 29(8): 103339, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35770271

RESUMO

In the present study, different water samples from Red Sea coastal area at Rabigh city, Saudi Arabia were studied for their dominant algal species. Microalgal isolation was carried out based on dilution method and morphologically examined using F/2 as a growth medium. Dry weight and main biochemical composition (protein, carbohydrates, lipids) of all species were performed at the end of the growth, and biodiesel characteristics were estimated. Nannochloropsis sp., Dunaliella sp., Tetraselmis sp., Prorocentrum sp., Chlorella sp., Nitzschia sp., Coscinodiscus sp., and Navicula sp. were the most dominant species in the collected water samples and were used for further evaluation. Nannochloropsis sp. surpassed all other isolates in concern of biomass production with the maximum recorded dry weight of 0.89 g L-1, followed by Dunaliella sp. (0.69 g L-1). The highest crude protein content was observed in Nitzschia sp. (38.21%) and Dunaliella sp. (18.01%), while Nannochloropsis sp. showed 13.38%, with the lowest recorded lipid content in Coscinodiscus sp. (10.09%). Based on the growth, lipid content, and biodiesel characteristics, the present study suggested Dunaliella sp. and Nitzschia sp. as promising candidates for further large-scale biodiesel production.

4.
Biomass Convers Biorefin ; : 1-12, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34603924

RESUMO

Currently, the enormous generation of contaminated disposed face masks raises many environmental concerns. The present study provides a novel route for efficient crude bio-oil production from disposed masks through co-hydrothermal liquefaction (Co-HTL) with Spirulina platensis grown in wastewater. Ultimate and proximate analysis confirmed that S. platensis contains relatively high nitrogen content (9.13%dw), which decreased by increasing the mask blend ratio. However, carbon and hydrogen contents were higher in masks (83.84 and 13.77%dw, respectively). In addition, masks showed 29.6% higher volatiles than S. platensis, which resulted in 94.2% lower ash content. Thermal decomposition of masks started at a higher temperature (≈330 °C) comparing to S. platensis (≈208 °C). The highest bio-oil yield was recorded by HTL of S. platensis and Co-HTL with 25% (w/w) masks at 300 °C, which showed insignificant differences with each other. GC/MS analysis of the bio-oil produced from HTL of algal biomass showed a high proportion of nitrogen- and oxygen-containing compounds (3.6% and 11.9%, respectively), with relatively low hydrocarbons (17.4%). Mask blend ratio at 25% reduced the nitrogen-containing compounds by 55.6% and enhanced the hydrocarbons by 43.7%. Moreover, blending of masks with S. platensis enhanced the compounds within the diesel range in favor of gasoline and heavy oil. Overall, the present study provides an innovative route for enhanced bio-oil production through mask recycling coupled with wastewater treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13399-021-01891-2.

5.
Bioresour Technol ; 342: 125966, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562712

RESUMO

The present study designed an innovative route for two-step biodiesel recovery from lipidic food waste followed by microalgae cultivation. Optimization of oil conversion showed the highest fatty acid methyl esters (FAMEs) recovery of 92.6% (lipid basis). Microalgal lipid accumulation enhanced by the increased lipid-free waste hydrolysate ratio in the medium, where the maximum lipid content of 26.2 dw% was recorded using 50% hydrolysate. Application of 30% hydrolysate ratio resulted in the maximum recorded lipid productivity, which was 99.4% higher than that of the control and insignificant with 40% hydrolysate. Waste oil-derived FAMEs showed 69.0% higher saturated fatty acids (SFAs) proportion than that of algal lipids. In contrast, the highest polyunsaturated fatty acids (PUFAs) proportion (48.8% of total fatty acids) was recorded in microalgal lipids. The study concluded that mixing microalgal lipids with waste oil (1:1, w/w) provides a desirable practical route for enhanced biodiesel production complying with the international standards.


Assuntos
Microalgas , Eliminação de Resíduos , Biocombustíveis , Biomassa , Ácidos Graxos , Alimentos , Lipídeos
6.
Saudi J Biol Sci ; 28(7): 3981-3988, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220255

RESUMO

Aiming at the reutilizing wastewater for algal growth and biomass production, a saline water rejected from reverse osmosis (RO) facility (salinity 67.59 g L-1) was used to cultivate the pre-adapted green microalga Chlorella vulgaris. The inoculum was prepared by growing cells in modified BG-11 medium, and adaptation was performed by applying a gradual increase in salinity (56.0 g L-1 NaCl and 125 ppm FeSO4·7H2O) to the culture in 200 L photobioreactor. Experiments using the adapted alga were performed using original-rejected water (ORW) and treated rejected water (TRW) comparing with the recommended growth medium (BG-11). The initial salinity of ORW was chemically reduced to 39.1 g L-1 to obtain TRW. Vertical photobioreactors (15 L) was used for indoor growth experiments. Growth in BG-11 resulted in 1.23 g L-1, while the next adaptation growth reached 2.14 g L-1 of dry biomass. The dry weights of re-cultivated Chlorella after adaptation were 1.49 and 2.19 g L-1 from ORW and TRW; respectively. The cellular oil content was only 12% when cells grown under control conditions verses to 14.3 and 15.42% with original and treated water, respectively. Induction of stress affected the fatty acid methyl esters (FAMEs) profile and the properties of the resulting biodiesel. The present results indicated that induction of stress by high salinity improves the quality of FAMEs that can be used as a promising biodiesel fuel.

7.
Saudi J Biol Sci ; 27(12): 3553-3558, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304166

RESUMO

The haptophyte microalga Tisochrysis lutea was heterotrophically grown in F2 medium with different combinations of pH and salinity. Growth, oil content and fatty acids (FAs) profile were determined under each set of conditions. The salinity was adjusted using NaCl at concentrations of 0.4, 0.6, 0.8, or 1.0 M, while pH was adjusted at 7, 8, or 9, and heterotrophic growth was performed using organic carbon in the form of sugar cane industry waste (CM). Fatty acid methyl esters (FAMEs) were identified by gas chromatography. The results showed that pH of 8.0 was the optimal for dry weight and oil production, regardless of the salinity level. At pH 8.0, growth at a salinity of 0.4 M NaCl was optimal for biomass accumulation (1.185 g L-1). Under these conditions, the maximum growth rate was 0.055 g L-1 d-1, with a doubling time of 17.5 h and a degree of multiplication of 2.198. Oil content was maximal (34.87%) when the salinity was 0.4 M and the pH was 9.0. The ratio of saturated to unsaturated FAs was affected by the pH value and salinity, in that unsaturated FAs increased to 58.09% of the total FAs, considerably greater than the value of 40.59% obtained for the control (0.4 M NaCl and pH 8.0).

8.
Molecules ; 25(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050388

RESUMO

In the present study, the marine microalga Tisochrysis lutea was cultivated mixotrophically in F2 growth medium with sodium acetate as exogenous carbon source. The medium was composed of different concentrations of nitrogen to determine the impact of nitrogen depletion on cellular growth and chemical composition. Nitrogen depletion led to severely decreased growth and protein content. However, mild nitrogen depletion (0.22 mM NaNO3) led to maximum lipid yield. The fatty acid methyl ester profile also showed increased unsaturation as the nitrogen content decreased. Growth in nitrogen-free medium increased the proportions of mono- and poly-unsaturated fatty acids, while the proportion of saturated fatty acids decreased. Growth under all tested nitrogen levels showed undetectable fatty acids with ≥4 double bonds, indicating these fatty acids had oxidative stability. In addition, all tested nitrogen concentrations led to specific gravity, kinematic viscosity, iodine value, and cetane number that meet the standards for Europe and the U.S.A. However, growth in the presence of nitrogen deficiency enhanced the higher heating value of the resulting biodiesel, a clear advantage from the perspective of energy efficiency. Thus, mixotrophic cultivation of T. lutea with nitrogen limitation provides a promising approach to achieve high lipid productivity and production of high-quality biodiesel.


Assuntos
Biocombustíveis , Microalgas/química , Microalgas/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio/metabolismo
9.
Bioresour Technol ; 317: 124027, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32829118

RESUMO

The aim of this work was to evaluate a novel integrated biorefinery route for enhanced energy recovery from seaweeds and microalgae. Agar extraction prior to anaerobic digestion recorded the highest biogas productivity of 32.57 L kg-1 VS d-1. Supplementation of the microalgal growth medium with anaerobic digestate from agar-extracted biomass enhanced the microalgal growth, recording the highest dry weight of 4.57 g L-1 at 20% digestate ratio. In addition, lipid content showed the highest value of 25.8 %dw. Due to enhancement of growth and lipid content, 20% digestate ratio showed the highest lipid productivity and FAMEs recovery (65.2 mg L-1 d-1 and 123.3 mg g-1dw, respectively), with enhanced biodiesel characteristics. The present study estimated annual revenue of 1252.7 US$ ton-1 from the whole Gracilaria multipartita biomass conversion into biogas, while that through agar extraction deserved 36087.0 US$ ton-1, with enhanced annual biodiesel yield by 69.7% over the control medium.


Assuntos
Microalgas , Alga Marinha , Ágar , Biocombustíveis , Biomassa
10.
Saudi J Biol Sci ; 27(8): 2038-2046, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714028

RESUMO

Pennate diatom Nitzschia palea can be cultured in outdoor vertical-bed photobioreactors to produce biodiesel. To assess the production of biomass and lipids, non-axenic cultures of Nitzschia palea were grown outdoors, and the growth of these cultures was measured biweekly. During the annual cycle of algal culture, the culture temperature ranged from 17.3 °C to 33.5 °C, the dry weight biomass ranged from 0.11 g l-1 to 0.25 g l-1, light energy] ranged from 1.94 Wm-2 to 3.9 Wm-2 and intracellular lipid content ranged from 7.1% to 11.4% of biomass weight after drying at 60 °C. Gas chromatography/mass spectroscopy (GC/MS) analysis of n-hexane extracts showed that the intracellular lipids were primarily C14:0 myristic acid (9.01%), C15:0 pentadecyclic acid (8.26%) and two types of C16:0, palmitic acid (41.13%) and palmitoleic acid (29.25%). Gel permeation analysis showed that carboxylic acids comprised 28.9% of lipids, 16.3% of monoglycerides, 27.3% of diglycerides and 24.3% of triglycerides. Alcoholysis of lipids resulted in the conversion of about 93.9% of fatty acids to equivalent fatty acid methyl esters (FAME) or biodiesel, which, on basis of wt%, consisted primarily of C15:0 methyl myristate (8.3%), C16:0 methyl pentadecanoate] (7.2%), C17:1methyl palmitoleate (28.7%) and methyl palimtate](39.8%).

11.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575616

RESUMO

Effects of 12 heavy metals on growth of free and alginate-immobilized cells of the alga Pseudokirchneriella subcapitata were investigated. The tested metals ions include Al, As, Cd, Co, Cr, Cu, Hg, Se, Ni, Pb, Sr, and Zn. Toxicity values (EC50) were calculated by graphical interpolation from dose-response curves. The highest to the lowest toxic metals are in the order Cd > Co > Hg > Cu > Ni > Zn > Cr > Al > Se > As > Pb > Sr. The lowest metal concentration (mg L-1) inhibiting 50% (EC50) of algal growth of free and immobilized (values in parentheses) algal cells were, 0.018 (0.09) for Cd, 0.03 (0.06) for Co, 0.039 (0.06) for Hg, 0.048 (0.050) for Cu, 0.055 (0.3) for Ni, 0.08 (0.1) for Zn, 0.2 (0.3) for Cr, 0.75 (1.8) for Al, 1.2 (1.4) for Se, 3.0 (4.0) for As, 3.3 (5.0) for Pb, and 160 (180) for Sr. Free and immobilized cultures showed similar responses to Cu and Se. The free cells were more sensitive than the immobilized ones. Accordingly, the toxicity (EC50) of heavy metals derived only form immobilized algal cells might by questionable. The study suggests that batteries of alginate-immobilized algae can efficiently replace free algae for the bio-removal of heavy metals.


Assuntos
Alginatos/química , Células Imobilizadas/metabolismo , Clorofíceas/metabolismo , Metais Pesados/toxicidade , Células Vegetais/metabolismo , Células Imobilizadas/citologia , Clorofíceas/citologia
12.
Environ Sci Pollut Res Int ; 27(26): 32296-32303, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32242318

RESUMO

This study was designed to assess the synergistic effects of nitrogen (N) and phosphorus (P) concentrations on oil content, fatty acid profile, and predicted fuel properties of Dunaliella salina. Axenic D. salina cells were grown in F/2 growth medium of salinity 34 ppt containing 33.6 g.l-1 ultramarine synthetic sea salt. Growth dry weight, cell count, and their relationship were measured, and oils were extracted by soaking following Soxhlet extraction. Growth dry weight was markedly affected by N and P concentrations, with maximum growth dry weights of cultures grown at recommended N and P concentrations (control), half of the recommended N concentration (0.5 N) and (0.5 N/0.5P) being 0.911 g.l-1, 0.755 g.l-1, and 0.615 g.l-1, respectively. Oil content showed the reverse pattern, with cultures grown in the absence of phosphorus (0.0P), full N/P starvation (0.0 N/0.0P), and control resulting in maximum oil contents of 24.86%, 22.85%, and 5.88%, respectively. The majority of fatty acid methyl esters ranged between C14 and C22. Estimated fuel properties of algal cells grown under NP stress conditions were found to meet the American Society for Testing and Materials (ASTM) and European Committee for Standardization (EN) guidelines.


Assuntos
Microalgas , Fósforo , Biocombustíveis , Biomassa , Ésteres , Ácidos Graxos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...