Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(49): 31010-31017, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229514

RESUMO

Perovskite solar cells have developed into a promising branch of renewable energy. A combination of feasible manufacturing and renewable modules can offer an attractive advancement to this field. Herein, a screen-printed three-layered all-nanoparticle network was developed as a rigid framework for a perovskite active layer. This matrix enables perovskite to percolate and form a complementary photoactive network. Two porous conductive oxide layers, separated by a porous insulator, serve as a chemically stable substrate for the cells. Cells prepared using this scaffold structure demonstrated a power conversion efficiency of 11.08% with a high open-circuit voltage of 0.988 V. Being fully oxidized, the scaffold demonstrated a striking thermal and chemical stability, allowing for the removal of the perovskite while keeping the substrate intact. The application of a new perovskite in lieu of a degraded one exhibited a full regeneration of all photovoltaic performances. Exclusive recycling of the photoactive materials from solar cells paves a path for more sustainable green energy production in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...