Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Med Dosim ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431501

RESUMO

Single-fraction stereotactic radiosurgery (SRS) or fractionated SRS (FSRS) are well established strategies for patients with limited brain metastases. A broad spectrum of modern dedicated platforms are currently available for delivering intracranial SRS/FSRS; however, SRS/FSRS delivered using traditional CT-based platforms relies on the need for diagnostic MR images to be coregistered to planning CT scans for target volume delineation. Additionally, the on-board image guidance on traditional platforms yields limited inter-fraction and intra-fraction real-time visualization of the tumor at the time of treatment delivery. MR Linacs are capable of obtaining treatment planning MR and on-table MR sequences to enable visualization of the targets and organs-at-risk and may subsequently help identify anatomical changes prior to treatment that may invoke the need for on table treatment adaptation. Recently, an MR-guided intracranial package (MRIdian A3i BrainTxTM) was released for intracranial treatment with the ability to perform high-resolution MR sequences using a dedicated brain coil and cranial immobilization system. The objective of this report is to provide, through the experience of our first patient treated, a comprehensive overview of the clinical application of our institutional program for FSRS adaptive delivery using MRIdian's A3i BrainTx system-highlights include reviewing the imaging sequence selection, workflow demonstration, and details in its delivery feasibility in clinical practice, and dosimetric outcomes.

3.
Tomography ; 10(1): 169-180, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250959

RESUMO

Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Espectroscopia de Ressonância Magnética
4.
Int J Radiat Oncol Biol Phys ; 118(2): 512-524, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793574

RESUMO

PURPOSE: This is the first reporting of the MRIdian A3iTM intracranial package (BrainTxTM) and benchmarks the end-to-end localization and dosimetric accuracy for commissioning an magnetic resonace (MR)-guided stereotactic radiosurgery program. We characterized the localization accuracy between MR and radiation (RT) isocenter through an end-to-end hidden target test, relative dose profile intercomparison, and absolute dose validation. METHODS AND MATERIALS: BrainTx consists of a dedicated head coil, integrated mask immobilization system, and high-resolution MR sequences. Coil and baseplate attenuation was quantified. An in-house phantom (Cranial phantOm foR magNetic rEsonance Localization of a stereotactIc radiosUrgery doSimeter, CORNELIUS) was developed from a mannequin head filled with silicone gel, film, and MR BB with pinprick. A hidden target test evaluated MR-RT localization of the 1×1×1 mm3 TrueFISP MR and relative dose accuracy in film for a 1 cm diameter (International Electrotechnical Commission (IEC)-X/IEC-Y) and 1.5 cm diameter (IEC-Y/IEC-Z) spherical target. Two clinical cases (irregular-shaped target and target abutting brainstem) were mapped to the CORNELIUS phantom for feasibility assessment. A 2-dimensional (2D)-gamma compared calculated and measured dose for spherical and clinical targets with 1 mm/1% and 2 mm/2% criteria, respectively. A small-field chamber (A26MR) measured end-to-end absolute dose for a 1 cm diameter target. RESULTS: Coil and baseplate attenuation were 0.7% and 2.7%, respectively. The displacement of MR to RT localization as defined through the pinprick was 0.49 mm (IEC-X), 0.27 mm (IEC-Y), and 0.51 mm (IEC-Z) (root mean square 0.76 mm). The reproducibility across IEC-Y demonstrated high fidelity (<0.02 mm). Gamma pass rates were 97.1% and 95.4% for 1 cm and 1.5 cm targets, respectively. Dose profiles for an irregular-shaped target and abutting organ-at-risk-target demonstrated pass rates of 99.0% and 92.9%, respectively. The absolute end-to-end dose difference was <1%. CONCLUSIONS: All localization and dosimetric evaluation demonstrated submillimeter accuracy, per the TG-142, TG-101, MPPG 9.a. criteria for SRS/SRT systems, indicating acceptable delivery capabilities with a 1 mm setup margin.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Espectroscopia de Ressonância Magnética
5.
Med Dosim ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38001010

RESUMO

Advances in radiotherapy (RT) technologies permit significant decreases in the dose delivered to organs at risk (OARs) for patients with esophageal cancer (EC). Novel RT modalities such as proton beam therapy (PBT) and magnetic resonance-guided radiotherapy (MRgRT), as well as motion management techniques including breath hold (BH) are expected to further improve the therapeutic ratio. However, to our knowledge, the dosimetric benefits of PBT vs MRgRT vs volumetric-modulated arc therapy (VMAT) have not been directly compared for EC. We performed a retrospective in silico evaluation using the images and datasets of nine distal EC patients who were treated at our institution with a 0.35-Tesla MR linac to 50.4 Gy in 28 fractions in mid-inspiration BH (BH-MRgRT). Comparison free-breathing (FB) intensity-modulated PBT (FB-IMPT) and FB-VMAT plans were retrospectively created using the same prescription dose, target volume coverage goals, and OAR constraints. A 5 mm setup margin was used for all plans. BH-IMPT and BH-VMAT plans were not evaluated as they would not reflect our institutional practice. Planners were blinded to the results of the treatment plans created using different radiation modalities. The primary objective was to compare plan quality, target volume coverage, and OAR doses. All treatment plans met pre-defined target volume coverage and OAR constraints. The median conformity and homogeneity indices between FB-IMPT, BH-MRgRT and FB-VMAT were 1.13, 1.25, and 1.43 (PITV) and 1.04, 1.15, 1.04 (HI), respectively. For FB-IMPT, BH-MRgRT and FB-VMAT the median heart dose metrics were 52.8, 79.3, 146.8 (V30Gy, cc), 35.5, 43.8, 77.5 (V40Gy, cc), 16.9, 16.9, 32.5 (V50Gy, cc) and 6.5, 14.9, 17.3 (mean, Gy), respectively. Lung dose metrics were 8.6, 7.9, 18.5 (V20Gy, %), and 4.3, 6.3, 11.2 (mean, Gy), respectively. The mean liver dose (Gy) was 6.5, 19.6, 22.2 respectively. Both FB-IMPT and BH-MRgRT achieve substantial reductions in heart, lung, and liver dose compared to FB-VMAT. We plan to evaluate dosimetric outcomes across these RT modalities assuming consistent use of BH.

6.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832529

RESUMO

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radiometria
7.
Brachytherapy ; 22(6): 872-881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722990

RESUMO

PURPOSE: This study evaluates the outcomes of recurrent brain metastasis treated with resection and brachytherapy using a novel Cesium-131 carrier, termed surgically targeted radiation therapy (STaRT), and compares them to the first course of external beam radiotherapy (EBRT). METHODS: Consecutive patients who underwent STaRT between August 2020 and June 2022 were included. All patients underwent maximal safe resection with pathologic confirmation of viable disease prior to STaRT to 60 Gy to a 5-mm depth from the surface of the resection cavity. Complications were assessed using CTCAE version 5.0. RESULTS: Ten patients with 12 recurrent brain metastases after EBRT (median 15.5 months, range: 4.9-44.7) met the inclusion criteria. The median BED10Gy90% and 95% were 132.2 Gy (113.9-265.1 Gy) and 116.0 Gy (96.8-250.6 Gy), respectively. The median maximum point dose BED10Gy for the target was 1076.0 Gy (range: 120.7-1478.3 Gy). The 6-month and 1-year local control rates were 66.7% and 33.3% for the prior EBRT course; these rates were 100% and 100% for STaRT, respectively (p < 0.001). At a median follow-up of 14.5 months, there was one instance of grade two radiation necrosis. Surgery-attributed complications were observed in two patients including pseudomeningocele and minor headache. CONCLUSIONS: STaRT with Cs-131 presents an alternative approach for operable recurrent brain metastases and was associated with superior local control than the first course of EBRT in this series. Our initial clinical experience shows that STaRT is associated with a high local control rate, modest surgical complication rate, and low radiation necrosis risk in the reirradiation setting.


Assuntos
Braquiterapia , Neoplasias Encefálicas , Humanos , Radioisótopos de Césio/uso terapêutico , Braquiterapia/métodos , Neoplasias Encefálicas/radioterapia , Necrose/etiologia
8.
Radiother Oncol ; 188: 109869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657726

RESUMO

BACKGROUND AND PURPOSE: Planning on a static dataset that reflects the simulation day anatomy is routine for SBRT. We hypothesize the quality of on-table adaptive plans is similar to the baseline plan when delivering stereotactic MR-guided adaptive radiotherapy (SMART) for pancreatic cancer (PCa). MATERIALS AND METHODS: Sixty-seven inoperable PCa patients were prescribed 50 Gy/5-fraction SMART. Baseline planning included: 3-5 mm gastrointestinal (GI) PRV, 50 Gy optimization target (PTVopt) based on GI PRV, conformality rings, and contracted GTV to guide the hotspot. For each adaptation, GI anatomy was re-contoured, followed by re-optimization. Plan quality was evaluated for target coverage (TC = PTVopt V100%/volume), PTV D90% and D80%, homogeneity index (HI = PTVopt D2%/D98%), prescription isodose/target volume (PITV), low-dose conformity (D2cm = maximum dose at 2 cm from PTVopt/Rx dose), and gradient index (R50%=50% Rx isodose volume/PTVopt volume).A novel global planning metric, termed the Pancreas Adaptive Radiotherapy Score (PARTS), was developed and implemented based on GI OAR sparing, PTV/GTV coverage, and conformality. Adaptive robustness (baseline to fraction 1) and stability (difference between two fractions with highest GI PRV variation) were quantified. RESULTS: OAR constraints were met on all baseline (n = 67) and adaptive (n = 318) plans. Coverage for baseline/adaptive plans was mean ± SD at 44.9 ± 5.8 Gy/44.3 ± 5.5 Gy (PTV D80%), 50.1 ± 4.2 Gy/49.1 ± 4.7 Gy (PTVopt D80%), and 80%±18%/74%±18% (TC), respectively. Mean homogeneity and conformality for baseline/adaptive plans were 0.87 ± 0.25/0.81 ± 0.30 (PITV), 3.81 ± 1.87/3.87 ± 2.0 (R50%), 1.53 ± 0.23/1.55 ± 0.23 (HI), and 58%±7%/59%±7% (D2cm), respectively. PARTS was found to be a sensitive metric due to its additive influence of geometry changes on PARTS' sub-metrics. There were no statistical differences (p > 0.05) for stability, except for PARTS (p = 0.04, median difference -0.6%). Statistical differences for robustness when significant were small for most metrics (<2.0% median). Median adaptive re-optimizations were 2. CONCLUSION: We describe a 5-fraction ablative SMART planning approach for PCa that is robust and stable during on-table adaption, due to gradients controlled by a GI PRV technique and the use of rings. These findings are noteworthy given that daily interfraction anatomic GI OAR differences are routine, thus necessitating on-table adaptation. This work supports feasibility towards utilizing a patient-independent, template on-table adaptive approach.

9.
Cleft Palate Craniofac J ; : 10556656231184967, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37437901

RESUMO

INTRODUCTION: Treacher Collins syndrome is a rare congenital disease characterized by the multiple craniofacial malformations. Although the deformities affecting patients with Treacher Collins syndrome have been well characterized, the effects of these malformations to clinical severity of the syndrome are not well understood. OBJECTIVE: To determine the association of specific Treacher Collins mandibular malformations with clinical severity. DESIGN: A retrospective radiographic observational study. SETTING: Study conducted at a single institution, a quaternary craniofacial care center. PATIENTS: 54 patients with Treacher Collins syndrome. INTERVENTIONS: Computed tomography (CT), clinical photographs and medical history were included in this analysis. Mandibles were isolated from CT data and reconstructed in three dimensions using Mimics software. Cephalometric measurements were performed on CT data. Clinical severity was determined by Teber and Vincent scores. Association of craniofacial dysmorphology to clinical severity was determined by Spearman rank coefficient. MAIN OUTCOME MEASURES: The main results obtained were the measurements of the mandibles and the quantification of the malformations of the evaluated patients. RESULTS: Among the most frequent findings in the sample are hypoplasia of the zygomatic complex, descending palpebral cleft and mandibular hypoplasia. Patients with a lower ramus/corpus ratio had a higher (more severe) Teber and Vincent classification. CONCLUSION: Patients with the most compromised mandible are also the patients with the highest number of malformations, thus, the most severe patients.

10.
J Appl Clin Med Phys ; 24(11): e14088, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415385

RESUMO

PURPOSE: The purpose of this study is to investigate inter-planner plan quality variability using a manual forward planning (MFP)- or fast inverse planning (FIP, Lightning)-approach for single brain lesions treated with the Gamma Knife® (GK) Icon™. METHODS: Thirty patients who were previously treated with GK stereotactic radiosurgery or radiotherapy were selected and divided into three groups (post-operative resection cavity, intact brain metastasis, and vestibular schwannoma [10 patients per group]). Clinical plans for the 30 patients were generated by multiple planners using FIP only (1), a combination of FIP and MFP (12), and MFP only (17). Three planners (Senior, Junior, and Novice) with varying experience levels re-planned the 30 patients using MFP and FIP (two plans per patient) with planning time limit of 60 min. Statistical analysis was performed to compare plan quality metrics (Paddick conformity index, gradient index, number of shots, prescription isodose line, target coverage, beam-on-time (BOT), and organs-at-risk doses) of MFP or FIP plans among three planners and to compare plan quality metrics between each planner's MFP/FIP plans and clinical plans. Variability in FIP parameter settings (BOT, low dose, and target max dose) and in planning time among the planners was also evaluated. RESULTS: Variations in plan quality metrics of FIP plans among three planners were smaller than those of MFP plans for all three groups. Junior's MFP plans were the most comparable to the clinical plans, whereas Senior's and Novice's MFP plans were superior and inferior, respectively. All three planners' FIP plans were comparable or superior to the clinical plans. Differences in FIP parameter settings among the planners were observed. Planning time was shorter and variations in planning time among the planners were smaller for FIP plans in all three groups. CONCLUSIONS: The FIP approach is less planner dependent and more time-honored than the MFP approach.


Assuntos
Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias Encefálicas/secundário , Encéfalo
11.
Med Dosim ; 48(4): 238-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330328

RESUMO

Given the positive results from recent randomized controlled trials in patients with oligometastatic, oligoprogressive, or oligoresidual disease, the role of radiotherapy has expanded in patients with metastatic non-small cell lung cancer (NSCLC). While small metastatic lesions are commonly treated with stereotactic body radiotherapy (SBRT), treatment of the primary tumor and involved regional lymph nodes may require prolonged fractionation schedules to ensure safety especially when treating larger volumes in proximity to critical organs-at-risk (OARs). We have developed an institutional MR-guided adaptive radiotherapy (MRgRT) workflow for these patients. We present a 71-year-old patient with stage IV NSCLC with oligoprogression of the primary tumor and associated regional lymph nodes in which MR-guided, online adaptive radiotherapy was performed, prescribing 60 Gy in 15 fractions. We describe our workflow, dosimetric constraints, and daily dosimetric comparisons for the critical OARs (esophagus, trachea, and proximal bronchial tree [PBT] maximum doses [D0.03cc]), in comparison to the original treatment plan recalculated on the anatomy of the day (i.e., predicted doses). During MRgRT, few fractions met the original dosimetric objectives: 6.6% for esophagus, 6.6% for PBT, and 6.6% for trachea. Online adaptive radiotherapy reduced the cumulative doses to the structures by 11.34%, 4.2%, and 5.62% when comparing predicted plan summations to the final delivered summation. Therefore, this case study presets a workflow and treatment paradigm for accelerated hypofractionated MRgRT due to the significant variations in daily dose to the central thoracic OARs to reduce treatment-related toxicity associated with radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radiocirurgia/métodos , Espectroscopia de Ressonância Magnética
13.
BMC Pregnancy Childbirth ; 23(1): 395, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248449

RESUMO

BACKGROUND: The increasing demand for childbirth care based on physiological principles has led official bodies to encourage health centers to provide evidence-based care aimed at promoting women's participation in informed decision-making and avoiding excessive medical intervention during childbirth. One of the goals is to reduce pain and find alternative measures to epidural anesthesia to enhance women's autonomy and well-being during childbirth. Currently, water immersion is used as a non-pharmacological method for pain relief. This review aimed to identify and synthesize evidence on women's and midwives' experiences, values, and preferences regarding water immersion during childbirth. METHODS: A systematic review and thematic synthesis of qualitative evidence were conducted. Databases were searched and references were checked according to specific criteria. Studies that used qualitative data collection and analysis methods to examine the opinions of women or midwives in the hospital setting were included. Non-qualitative studies, mixed-methods studies that did not separately report qualitative results, and studies in languages other than English or Spanish were excluded. The Critical Appraisal Skills Program Qualitative Research Checklist was used to assess study quality, and results were synthesized using thematic synthesis. RESULTS: Thirteen studies met the inclusion criteria and were included in this review. The qualitative studies yielded three key themes: 1) reasons identified by women and midwives for choosing a water birth, 2) benefits experienced in water births, and 3) barriers and facilitators of water immersion during childbirth. CONCLUSIONS: The evidence from qualitative studies indicates that women report benefits associated with water birth. From the perspective of midwives, ensuring safe water births requires adequate resources, midwives training, and rigorous standardized protocols to ensure that all pregnant women can safely opt for water immersion during childbirth with satisfactory results.


Assuntos
Tocologia , Água , Gravidez , Feminino , Humanos , Imersão , Parto , Parto Obstétrico , Tocologia/métodos , Pesquisa Qualitativa
14.
J Appl Clin Med Phys ; 24(6): e13936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855958

RESUMO

OBJECTIVES: The objective of this study is to evaluate the user-defined optimization settings in the Fast Inverse Planning (FIP) optimizer in Leksell GammaPlan® and determine the parameters that result in the best stereotactic radiosurgery (SRS) plan quality for brain metastases, benign tumors, and arteriovenous malformations (AVMs). METHODS: Thirty patients with metastases and 30 with benign lesions-vestibular schwannoma, AVMs, pituitary adenoma, and meningioma-treated with SRS were evaluated. Each target was planned by varying the low dose (LD) and beam-on-time (BOT) penalties in increments of 0.1, from 0 to 1. The following plan quality metrics were recorded for each plan: Paddick conformity index (PCI), gradient index (GI), BOT, and maximum organ-at-risk (OAR) doses. A novel objective score matrix was calculated for each target using a linearly weighted combination of the aforementioned metrics. A histogram of optimal solutions containing the five best scores was extracted. RESULTS: A total of 7260 plans were analyzed with 121 plans per patient for the range of LD/BOT penalties. The ranges of PCI, GI, and BOT across all metastatic lesions were 0.58-0.97, 2.1-3.8, and 8.8-238 min, respectively, and were 0.13-0.97, 2.1-3.8, and 8.8-238 min, respectively, for benign lesions. The objective score matrix showed unique optimal solutions for metastatic lesions and benign lesions. Additionally, the plan metrics of the optimal solutions were significantly improved compared to the clinical plans for metastatic lesions with equivalent metrics for all other cases. CONCLUSION: In this study, FIP optimizer was evaluated to determine the optimal solution space to maximize PCI and minimize GI, BOT and OAR doses simultaneously for single metastatic/benign/non-neoplastic targets. The optimal solution chart was determined using a novel objective score which provides novice and expert planners a roadmap to generate the most optimal plans efficiently using FIP.


Assuntos
Malformações Arteriovenosas , Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Neoplasias Encefálicas/secundário , Dosagem Radioterapêutica , Malformações Arteriovenosas/cirurgia , Planejamento da Radioterapia Assistida por Computador
15.
Med Dosim ; 48(3): 127-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36966049

RESUMO

For patients with newly diagnosed glioblastoma, the current standard-of-care includes maximal safe resection, followed by concurrent chemoradiotherapy and adjuvant temozolomide, with tumor treating fields. Traditionally, diagnostic imaging is performed pre- and post-resection, without additional dedicated longitudinal imaging to evaluate tumor volumes or other treatment-related changes. However, the recent introduction of MR-guided radiotherapy using the ViewRay MRIdian A3i system includes a dedicated BrainTx package to facilitate the treatment of intracranial tumors and provides daily MR images. We present the first reported case of a glioblastoma imaged and treated using this workflow. In this case, a 67-year-old woman underwent adjuvant chemoradiotherapy after gross total resection of a left frontal glioblastoma. The radiotherapy treatment plan consisted of a traditional two-phase design (46 Gy followed by a sequential boost to a total dose of 60 Gy at 2 Gy/fraction). The treatment planning process, institutional workflow, treatment imaging, treatment timelines, and target volume changes visualized during treatment are presented. This case example using our institutional A3i system workflow successfully allows for imaging and treatment of primary brain tumors and has the potential for margin reduction, detection of early disease progression, or to detect the need for dose adaptation due to interfraction tumor volume changes.

16.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765738

RESUMO

We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.

17.
Obes Surg ; 33(4): 1211-1217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849786

RESUMO

BACKGROUND: Bariatric surgery (BS) has a significant impact on body composition. The purpose of the study is to evaluate the usefulness of musculoskeletal ultrasound (MUS) to bioelectrical impedance (BIA) in the follow-up of patients undergoing BS in terms of body composition and quality of life (QoL). METHODS: This is a prospective pilot study including 32 subjects (75% female, mean age: 49.15 ± 1.9 years) who underwent BS. Fat mass (FM), lean mass (LM), and skeletal muscle index (SMI) were calculated by BIA. MUS measured subcutaneous fat (SF) and thigh muscle thickness (TMT) of the quadriceps. QoL was assessed by the Moorehead-Ardelt questionnaire. All these measurements were performed 1 month prior to BS and at 12-month follow-up. RESULTS: The mean BMI decreased by 6.63 ± 1.25 kg/m2 (p=0.001). We observed significant reductions in FM (p=0.001) and SF (p=0.007) and in LM (p=0.001) but not in SMI and TMT. We found a correlation between the FM and SF (pre-surgical, r=0.42, p=0.01; post-surgical, r=0.52, p=0.003) and between SMI and TMT (pre-surgical, r=0.35, p=0.04; post-surgical, r=0.38, p=0.03). QoL test showed significant improvement (p=0.001). In addition, a correlation between the QoL questionnaire and TMT post-surgery (r=0.91, p=0.019) was observed. However, we did not find any statistically significant correlation between QoL assessment and SMI or LM. CONCLUSIONS: Our results suggest that MUS can be complementary to BIA for the evaluation and the follow-up of body composition after BS. TMT of quadriceps can provide relevant information about regional sarcopenia and has a significant correlation with QoL.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Qualidade de Vida , Projetos Piloto , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Composição Corporal/fisiologia , Cirurgia Bariátrica/métodos , Índice de Massa Corporal , Impedância Elétrica
18.
J Appl Clin Med Phys ; 24(6): e13926, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800309

RESUMO

PURPOSE: This article describes our experience in implementation of superficial radiation therapy (SRT) using SRT-100 Vision™ for non-melanoma skin cancer. METHODS: Following the American Association of Physicists in Medicine Task Group-61 protocol, absolute output (absorbed dose to water at surface (cGy/min)) was measured for three energies (50, 70, and 100 kV) and for six applicators (1.5-5.0 cm in diameter). Percent depth dose (PDD) and profiles were also measured. Timer testing and ultrasound testing were performed. A treatment time calculation worksheet was created. Quality assurance (QA) of SRT-100 Vision was implemented. After treatment workflow for our clinic was developed, end-to-end (E2E) testing was performed using a Rando phantom. Considerations for treatment using SRT-100 Vision were made. RESULTS: Absolute output (cGy/min) decreases as energy increases and applicator size decreases. Due to scatter from the applicator, PDD at depths ≤5 mm does not follow conventional trends but PDD at depths ≥15 mm increases with increasing applicator size. Profiles for the 5 cm applicator do not have strong dependence on depth except profiles at 5 mm for 50 kV. Timer/end errors are negligible for all three energies. Ultrasound images confirm allowed field of view and depth as well as no image artifacts and spatial integrity. Daily, monthly and annual QA of SRT-100 Vision implemented in our clinic is listed in a table format. E2E testing results (<1%) demonstrate the functionality and performance of our treatment workflow. Our considerations for SRT treatment include patient, applicator size and energy selections, patient setup, and shields. CONCLUSIONS: This article is expected to serve as guidance for Radiation Oncology and/or Dermatology clinics aspiring to initiate an SRT program in their clinics.


Assuntos
Radioterapia (Especialidade) , Neoplasias Cutâneas , Humanos , Dosagem Radioterapêutica , Imagens de Fantasmas , Neoplasias Cutâneas/radioterapia , Radiometria/métodos
19.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706460

RESUMO

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...