Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(13): 7909-7922, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311847

RESUMO

Predicting lithium-ion battery degradation is worth billions to the global automotive, aviation and energy storage industries, to improve performance and safety and reduce warranty liabilities. However, very few published models of battery degradation explicitly consider the interactions between more than two degradation mechanisms, and none do so within a single electrode. In this paper, the first published attempt to directly couple more than two degradation mechanisms in the negative electrode is reported. The results are used to map different pathways through the complicated path dependent and non-linear degradation space. Four degradation mechanisms are coupled in PyBaMM, an open source modelling environment uniquely developed to allow new physics to be implemented and explored quickly and easily. Crucially it is possible to see 'inside the model and observe the consequences of the different patterns of degradation, such as loss of lithium inventory and loss of active material. For the same cell, five different pathways that can result in end-of-life have already been found, depending on how the cell is used. Such information would enable a product designer to either extend life or predict life based upon the usage pattern. However, parameterization of the degradation models remains as a major challenge, and requires the attention of the international battery community.

2.
Diagnostics (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669747

RESUMO

Three-directional cine multi-slice left ventricular myocardial velocity mapping (3Dir MVM) is a cardiac magnetic resonance (CMR) technique that allows the assessment of cardiac motion in three orthogonal directions. Accurate and reproducible delineation of the myocardium is crucial for accurate analysis of peak systolic and diastolic myocardial velocities. In addition to the conventionally available magnitude CMR data, 3Dir MVM also provides three orthogonal phase velocity mapping datasets, which are used to generate velocity maps. These velocity maps may also be used to facilitate and improve the myocardial delineation. Based on the success of deep learning in medical image processing, we propose a novel fast and automated framework that improves the standard U-Net-based methods on these CMR multi-channel data (magnitude and phase velocity mapping) by cross-channel fusion with an attention module and the shape information-based post-processing to achieve accurate delineation of both epicardial and endocardial contours. To evaluate the results, we employ the widely used Dice Scores and the quantification of myocardial longitudinal peak velocities. Our proposed network trained with multi-channel data shows superior performance compared to standard U-Net-based networks trained on single-channel data. The obtained results are promising and provide compelling evidence for the design and application of our multi-channel image analysis of the 3Dir MVM CMR data.

3.
Sci Rep ; 8(1): 6457, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691436

RESUMO

A comprehensive assessment of the nature of the distribution of sub band-gap energy states in bulk GaAsBi is presented using power and temperature dependent photoluminescence spectroscopy. The observation of a characteristic red-blue-red shift in the peak luminescence energy indicates the presence of short-range alloy disorder in the material. A decrease in the carrier localisation energy demonstrates the strong excitation power dependence of localised state behaviour and is attributed to the filling of energy states furthest from the valence band edge. Analysis of the photoluminescence lineshape at low temperature presents strong evidence for a Gaussian distribution of localised states that extends from the valence band edge. Furthermore, a rate model is employed to understand the non-uniform thermal quenching of the photoluminescence and indicates the presence of two Gaussian-like distributions making up the density of localised states. These components are attributed to the presence of microscopic fluctuations in Bi content, due to short-range alloy disorder across the GaAsBi layer, and the formation of Bi related point defects, resulting from low temperature growth.

4.
Nanoscale Res Lett ; 7(1): 681, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23249477

RESUMO

The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...