Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559294

RESUMO

A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2-6 fold lower than that of cisplatin, and 30-90 fold lower than that of carboplatin for the tumor cell lines assayed. Comparing the IC50 values between tumor and non-tumor cell lines, the selectivity indexes range from 3.2 to 34, compound 10, [Fe2(4)2(CH3CN)4](BF4)4, showing the highest selectivity. Those compounds carrying substituents on the iminopyridine ring show the same cytotoxicity as those without substituents. However, the electronic effects of the substituents on position 6 may be important for the cytotoxicity of the complexes, and consequently for their selectivity. All compounds act over DNA, promoting cuts on both strands in the presence of reactive oxygen species. Since compound 10 presented the highest selectivity, its cytotoxic effect was further characterized. It induces apoptosis, affects cell cycle phase distribution in a cell-dependent manner, and its cytotoxic effect is linked to reactive oxygen species generation. In addition, it decreases tumor cell migration, showing potential antimetastatic effects. These properties make compound 10 a good lead antitumor agent among all compounds studied here.

2.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771515

RESUMO

Somatic DNA hypomethylation and aneuploidy are hallmarks of cancer, and there is evidence for a causal relationship between them in knockout mice but not in human cancer. The non-mobile pericentromeric repetitive elements SST1 are hypomethylated in about 17% of human colorectal cancers (CRC) with some 5-7% exhibiting strong age-independent demethylation. We studied the frequency of genome doubling, a common event in solid tumors linked to aneuploidy, in randomly selected single cell clones of near-diploid LS174T human CRC cells differing in their level of SST1 demethylation. Near-diploid LS174T cells underwent frequent genome-doubling events generating near-tetraploid clones with lower levels of SST1 methylation. In primary CRC, strong SST1 hypomethylation was significantly associated with global genomic hypomethylation and mutations in TP53. This work uncovers the association of the naturally occurring demethylation of the SST1 pericentromeric repeat with the onset of spontaneous tetraploidization in human CRC cells in culture and with TP53 mutations in primary CRCs. Altogether, our findings provide further support for an oncogenic pathway linking somatic hypomethylation and genetic copy number alterations in a subset of human CRC.

3.
Elife ; 102021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448454

RESUMO

Longevity is often associated with stress resistance, but whether they are causally linked is incompletely understood. Here we investigate chemosensory-defective Caenorhabditis elegans mutants that are long-lived and stress resistant. We find that mutants in the intraflagellar transport protein gene osm-3 were significantly protected from tunicamycin-induced ER stress. While osm-3 lifespan extension is dependent on the key longevity factor DAF-16/FOXO, tunicamycin resistance was not. osm-3 mutants are protected from bacterial pathogens, which is pmk-1 p38 MAP kinase dependent, while TM resistance was pmk-1 independent. Expression of P-glycoprotein (PGP) xenobiotic detoxification genes was elevated in osm-3 mutants and their knockdown or inhibition with verapamil suppressed tunicamycin resistance. The nuclear hormone receptor nhr-8 was necessary to regulate a subset of PGPs. We thus identify a cell-nonautonomous regulation of xenobiotic detoxification and show that separate pathways are engaged to mediate longevity, pathogen resistance, and xenobiotic detoxification in osm-3 mutants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Resistência a Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Longevidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Tunicamicina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo , Tunicamicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...