Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 25(48): 485402, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24177226

RESUMO

We present a study of order-disorder phenomena in the series of tetrahedral ordered vacancy compounds Zn1-xMnxGa2Se4 by means of time-of-flight neutron diffraction at high temperature together with dc magnetic susceptibility, Raman spectroscopy, differential thermal analysis and optical absorption experiments. Samples of nominal composition x = 0, 0.24, 0.5, 0.77 and 1 have been studied. An order-disorder phase transition has been detected, with Tc ranging from 472 to 610 ° C, which involves a structural change from a defect chalcopyrite phase, with I4 space group (s.g.) and three different cation sites, to a partially disordered defect stannite, in which Zn, Mn and half of the Ga ions share the 4d site in I42m s.g. Neither the vacancies nor the Ga ions occupying site 2a are involved in the phase transition. An additional ordering process is observed on approaching the phase transition from below, which is attributed to several factors: the activation of cation diffusion at ∼300 ° C, the partially disordered cation distribution exhibited by the as-grown single crystals and the preference of Mn atoms for the 2d crystallographic site in the I4 structure. The reversibility of the phase transition is analysed with the aid of magnetic, optical and Raman experiments.

2.
J Phys Condens Matter ; 25(16): 165802, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23552080

RESUMO

Order-disorder phase transitions induced by thermal annealing have been studied in the ordered-vacancy compound ZnGa2Se4 by means of Raman scattering and optical absorption measurements. The partially disordered as-grown sample with tetragonal defect stannite (DS) structure and I4¯2m space group has been subjected to controlled heating and cooling cycles. In situ Raman scattering measurements carried out during the whole annealing cycle show that annealing the sample to 400 °C results in a cation ordering in the sample, leading to the crystallization of the ordered tetragonal defect chalcopyrite (DC) structure with I4¯ space group. On decreasing temperature the ordered cation scheme of the DC phase can be retained at ambient conditions. The symmetry of the Raman-active modes in both DS and DC phases is discussed and the similarities and differences between the Raman spectra of the two phases emphasized. The ordered structure of annealed samples is confirmed by optical absorption measurements and ab initio calculations, that show that the direct bandgap of DC-ZnGa2Se4 is larger than that of DS-ZnGa2Se4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...